首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparative study on the susceptibility of freshwater species to copper-based pesticides
Authors:de Oliveira-Filho Eduardo Cyrino  Lopes Renato Matos  Paumgartten Francisco José Roma
Institution:Embrapa Cerrados, Rodovia BR020, Km 18, Planaltina, DF CEP 73301-970, Brazil. cyrino@cpac.embrapa.br
Abstract:Copper compounds have been intentionally introduced into water bodies as aquatic plant herbicides, algicides and molluscicides. Copper-based fertilizers and fungicides have been widely used in agriculture as well. Despite the fact that copper is an essential element for all biota, elevated concentrations of this metal have been shown to affect a variety of aquatic organisms. Nonetheless, comparative studies on the susceptibility of different freshwater species to copper compounds have seldom been performed. This study was conducted to compare toxicity of copper-based pesticides (copper oxychloride, cuprous oxide and copper sulfate) to different freshwater target (Raphidocelis subcapitata, a planktonic alga and Biomphalaria glabrata, a snail) and non-target (Daphnia similis, a planktonic crustacean and Danio rerio, a fish) organisms. Test water parameters were as follows: pH = 7.4 +/- 0.1; hardness 44 +/- 1 mg/l as CaCO3; DO 8-9 mg/l at the beginning and > 4 mg/l at the end; temperature, fish and snails 25 +/- 1 degrees C, Daphnia 20 +/- 2 degrees C, algae 24 +/- 1 degrees C. D. similis (immobilization), 48-h EC50s (95% CLs) ranging from 0.013 (0.011-0.016) to 0.043 (0.033-0.057) mg Cu/l, and R. subcapitata (growth inhibition), 96-h IC50s from 0.071 (0.045-0.099) to 0.137 (0.090-0.174) mg Cu/l, were the most susceptible species. B. glabrata (lethality), 48-h LC50s from 0.179 (0.102-0.270) to 0.854 (0.553-1.457) mg Cu/l, and D. rerio (lethality), 48-h LC50s 0.063 (0.045-0.089), 0.192 (0.133-0.272) and 0.714 (0.494-1.016) mg Cu/l, were less susceptible than Daphnia to copper-based pesticides. Findings from the present study therefore suggest that increased levels of copper in water bodies is likely to adversely affect a variety of aquatic species.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号