首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Decomposition of aqueous chlorinated contaminants by UV irradiation with H2O2
Authors:Eunsung KAN  Chang-Il KOH  Kyunghyuk LEE  Joonwun KANG
Institution:1. Department of Molecular Bioscience and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA2. Department of Industrial Environment and Health, Yonsei University, Wonju 220-842, Korea
Abstract:In the present study, the decomposition rates of carbon tetrachloride (CCl4) and 2,4-dichlorophenol (2,4-DCP) in water by the ultraviolet (UV) light irradiation alone and H2O2/UV were experimentally investigated. The detailed experimental studies have been conducted for examining treatment capacities of the two different ultraviolet light sources (low and medium pressure Hg arc) in H2O2/UV processes. The low or medium UV lamp alone resulted in a 60%–90% decomposition of 2,4-DCP while a slight addition of H2O2 resulted in a drastic enhancement of the 2,4-DCP decomposition rate. The decomposition rate of 2,4-DCP with the medium pressure UV lamp alone was about 3–6 times greater than the low pressure UV lamp alone. In the direct photolysis of aqueous CCl4, the medium pressure UV lamp had advantage over the low pressure UV lamp because the molar extinction coefficient of CCl4 at shorter wavelength (210–220 nm) is about 20 to 50 times higher than that at 254 nm. However, adding H2O2 to the medium pressure UV lamp system rendered a negative oxidation rate because H2O2 acted as a UV absorber being competitive with CCl4 due to negligible reaction between CCl4 and OH radicals. The results from the present study indicated significant influence of the photochemical properties of the target contaminants on the photochemical treatment characteristics for designing cost-effective UV-based degradation of toxic contaminants.
Keywords:H2O2/ultraviolet (UV) light  advanced oxidation  UV light irradiation  chlorinated contaminants  photochemical treatment characteristics  
点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Environmental Science & Engineering》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号