首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sonochemical degradation of aromatic organic pollutants
Authors:Goskonda Sridevi  Catallo W James  Junk Thomas
Institution:Department of Chemistry, University of Louisiana at Monroe, 71203, USA.
Abstract:This work examines the use of ultrasound to mineralize 4-chlorophenol, 2,4-dichlorophenol, aryl-2H3]2,4-dichlorophenol, 4-chloro-3,5-dimethylphenol, 4-fluorophenol, 2,4,6-trinitrotoluene, 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene in dilute aqueous solution. Mineralization rates were determined as a function of substrate structure and concentration, bulk phase temperature, pH and the presence of co-solutes such as detergents and humic acids. All substrates were found to degrade sonochemically, as evidenced by the release of Cl- and NO3- respectively. Product analyses by GC-MS, HPLC, and micellar electrokinetic capillary chromatography (MECC) indicated mineralization with little formation of organic byproducts, a significant advantage over other remediation methods. Chloride release from chlorophenols was approximately proportional to substrate total chlorine content, irrespective of structural differences, and reached 80% of the theoretical limit. Fluoride release from 4-fluorophenol was ca. 10-fold lower than that of chloride from 4-chlorophenol. Changes in the bulk phase temperature from 9.5 to 34 degrees C, and 12.5 to 30 degrees C, respectively, were of little consequence to observed mineralization rates for nitroaromatics and chlorophenols. A significant mineralization rate increase resulted from sonication of 4-chlorophenol in acidified media. Additions of amphiphilic co-solutes resulted in modest, but statistically significant, sonolysis enhancements.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号