首页 | 本学科首页   官方微博 | 高级检索  
     

大亚湾初级生产力人工神经网络预测模型研究
引用本文:吴风霞,李纯厚,戴明,杜飞雁,林琳,王昊. 大亚湾初级生产力人工神经网络预测模型研究[J]. 海洋环境科学, 2009, 28(6)
作者姓名:吴风霞  李纯厚  戴明  杜飞雁  林琳  王昊
作者单位:农业部渔业生态环境重点开放实验室,中国水产科学研究院南海水产研究所,广东,广州,510300;广东海洋大学,水产学院,广东,湛江,524000;农业部渔业生态环境重点开放实验室,中国水产科学研究院南海水产研究所,广东,广州,510300;上海水产大学,海洋学院,上海,200090
基金项目:科技部科研院所社会公益研究专项资金项目,中央级公益性科研院所基本科研业务费专项资金项目(中国水产科学研究院南海水产研究所) 
摘    要:针对海湾初级生产力估算与预测难题,结合大亚湾近20 a的调查资料,基于MATLAB语言编程,将NH_4-N、NO_-N、NO_2-N、PO_4-P、SiO_3-Si、N/P作为输入,叶绿素a作为输出,建立大亚湾初级生产力的人工神经网络预测模型,并进行检验,其模拟值的平均相对误差0.932%;同时应用多元回归方法进行拟合预测,其拟合结果的平均相对误差为38.970%.研究结果表明,人工神经网络方法优于传统的统计学模型,具有较好的预测能力和实用性,可进行海湾初级生产力动态的预测估算,并具有较高的精度.

关 键 词:初级生产力  人工神经网络  预测  大亚湾

Study on forecasting model of artificial neural networks of primary productivity in Daya Bay
WU Feng-xia,LI Chun-hou,DAI Ming,DU Fei-yan,LIN Lin,WANG Hao. Study on forecasting model of artificial neural networks of primary productivity in Daya Bay[J]. Marine Environmental Science, 2009, 28(6)
Authors:WU Feng-xia  LI Chun-hou  DAI Ming  DU Fei-yan  LIN Lin  WANG Hao
Abstract:According to the primary productivity estimates and forecast problems in the bay, based on the survey data, NH_4-N, NO_-N, NO_2-N, PO_4-P, SiO_3-Si, N/P, and chlorophylla, in Daya Bay nearly 20 years, and MATLAB language programming, the establish and test of the artificial neural network forecasting model of the primary productivity in the Daya Bay were done.The average value of the simulation relative error is 0.932%;at the same time, application of the multiple regression methods was made, the average fitting results relative error is 38.970%.The results show that the artificial neural network method is superior to the traditional statistical models, has good predictive capability and practicality.It could conduct the primary productivity dynamics of the gulf forecast estimates and higher precision.
Keywords:artificial neural networks  primary productivity  forecast  Daya Bay
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号