首页 | 本学科首页   官方微博 | 高级检索  
     

多元回归和BP人工神经网络在预测混合厌氧消化产气量过程中的应用比较
引用本文:张文阳,张良均,李娜,周红艳. 多元回归和BP人工神经网络在预测混合厌氧消化产气量过程中的应用比较[J]. 环境工程学报, 2013, 7(2): 747-752
作者姓名:张文阳  张良均  李娜  周红艳
作者单位:1. 西南交通大学地球科学与环境工程学院,成都,610031
2. 广州太普软件科技有限公司,广州,510665
摘    要:对脂肪类单基质和城市污水厂剩余污泥混合厌氧消化过程的产气阶段进行基于多元回归和BP人工神经网络的产气量预测模型比较研究。实验数据分别取自反应过程的第1~16天和第17~70天。结果表明:多元回归模型的预测平均准确率分别为75.69%和79.29%;BP神经网络模型的预测平均准确率为79.05%。通过对比2种模型的预测结果可知,两种模型都有较高的预测准确率,但BP模型的预测准确率更高,更适用于混合厌氧消化产气量预测。

关 键 词:多元回归  BP人工神经网络  混合厌氧消化  产气预测模型
修稿时间:2012-04-08

Comparing multiple regression and BP artificial nerve net model used on prediction of anaerobic co-digestion gas-producing process
Zhang Wenyang,Zhang Liangjun,Li Na and Zhou Hongyan. Comparing multiple regression and BP artificial nerve net model used on prediction of anaerobic co-digestion gas-producing process[J]. Techniques and Equipment for Environmental Pollution Control, 2013, 7(2): 747-752
Authors:Zhang Wenyang  Zhang Liangjun  Li Na  Zhou Hongyan
Affiliation:Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China;Guangzhou Tipdm Software Technology Co. Ltd., Guangzhou 510665, China;Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China;Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China
Abstract:A comparative study on the forecasted gas-producing model based on the multiple regression and BP artificial nerve net of the gas-producing phase on an anaerobic co-digestion experiment with the fat biomass and sewage sludge was carried out. The data of the experiment was taken during the reaction process in 1th~16 th and 17 th~70 th. The results showed that the average forecast correctness rate of multiple regression model was about 75.69% and 79.29%, respectively and that of BP neural network model was about 79.05%. The forecasted correctness rate of the both was higher by comparing the predicted results of the both models. However, the BP model was better than another one, which was more suitable for the gas prediction of the co-digestion system.
Keywords:multiple regression  BP artificial neural networks  anaerobic co-digestion  gas production forecast model
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境工程学报》浏览原始摘要信息
点击此处可从《环境工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号