首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars
Authors:Ziwen Du  Chuyi Huang  Jiaqi Meng  Yaru Yuan  Ze Yin  Li Feng  Yongze Liu  Liqiu Zhang
Institution:1. Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China2. College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
Abstract: ? TPhP showed faster and higher sorption on biochars than TPPO. ? Pyrochars had higher sorption capacity for TPPO than hydrochar. ? Hydrophobic interactions dominated TPhP sorption by biochars. ? The π-π EDA and electrostatic interactions are involved in sorption. Aromatic organophosphate flame retardant (OPFR) pollutants and biochars are commonly present and continually released into soils due to their increasingly wide applications. In this study, for the first time, the sorption of OPFRs on biochars was investigated. Although triphenyl phosphate (TPhP) and triphenylphosphine oxide (TPPO) have similar molecular structures and sizes, TPhP exhibited much faster and higher sorption than TPPO due to its stronger hydrophobicity, suggesting the dominant role of hydrophobic interactions in TPhP sorption. The π-π electron donor–acceptor (EDA) interactions also contributed to the sorption process, as suggested by the negative correlation between the sorption capacity of the aromatic OPFRs and the aromatic index (H/C atomic ratios) of biochar. Density functional theory calculations further showed that one benzene ring of aromatic OPFRs has no electrons, which may interact with biochar via π-π EDA interactions. The electrostatic attraction between the protonated P = O in OPFRs and the negatively charged biochar was found to occur at pH below 7. This work provides insights into the sorption behaviors and mechanisms of aromatic OPFRs by biochars.
Keywords:Organophosphate flame retardants  Hydrochar  Pyrochar  Adsorption  Emerging contaminants  Biochar  
点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Environmental Science & Engineering》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号