Enhanced enzymatic removal of anthracene by the mangrove soil-derived fungus, Aspergillus sydowii BPOI |
| |
Authors: | Paul Olusegun Bankole Kirk Taylor Semple Byong-Hun Jeon Sanjay Prabhu Govindwar |
| |
Affiliation: | 1. Department of Pure and Applied Botany, College of Biosciences, Federal University of Agriculture Abeokuta, Ogun State 234039, Nigeria2. Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK3. Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea |
| |
Abstract: | • A. sydowii strain bpo1 exhibited 99.8% anthracene degradation efficiency. • Four unique metabolic products were obtained after anthracene degradation. • Ligninolytic enzymes induction played vital roles in the removal of anthracene. • Laccase played a crucial role in comparison with other enzymes induced. The present study investigated the efficiency of Aspergillus sydowii strain bpo1 (GenBank Accession Number: MK373021) in the removal of anthracene (100 mg/L). Optimal degradation efficiency (98.7%) was observed at neutral pH, temperature (30℃), biomass weight (2 g) and salinity (0.2% w/v) within 72 h. The enzyme analyses revealed 131%, 107%, and 89% induction in laccase, lignin peroxidase, and manganese peroxidase respectively during anthracene degradation. Furthermore, the degradation efficiency (99.8%) and enzyme induction were significantly enhanced with the addition of 100 mg/L of citric acid and glucose to the culture. At varying anthracene concentrations (100–500 mg/L), the degradation rate constants (k1) peaked with increasing concentration of anthracene while the half-life (t1/2) decreases with increase in anthracene concentration. Goodness of fit (R2 = 0.976 and 0.982) was observed when the experimental data were subjected to Langmuir and Temkin models respectively which affirmed the monolayer and heterogeneous nature exhibited by A. sydwoii cells during degradation. Four distinct metabolites; anthracene-1,8,9 (2H,8aH,9aH)-trione, 2,4a-dihydronaphthalene-1,5-dione, 1,3,3a,7a-tetrahydro-2-benzofuran-4,7-dione and 2-hydroxybenzoic acid was obtained through Gas Chromatography-Mass spectrometry (GC-MS). A. sydowii exhibited promising potentials in the removal of PAHs. |
| |
Keywords: | Aspergillus sydowii Anthracene Biodegradation Polycyclic aromatic hydrocarbons |
|
| 点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息 |
|
点击此处可从《Frontiers of Environmental Science & Engineering》下载全文 |
|