首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrochemical modelling of the retention and transport of metallic radionuclides in the soils of an upland catchment
Authors:Tipping E
Institution:Institute of Freshwater Ecology, Windermere Laboratory, Ambleside, Cumbria LA22 0LP, UK.
Abstract:The CHemistry of the Uplands Model (CHUM) describes the transport of chemicals through upland catchments with acid, organic-rich soils, by a combination of sub-models for equilibrium soil chemistry, hydrology, weathering, and nitrogen cycling. CHUM was used to simulate the retention and transport of metallic radionuclides (Co, Sr, Cs, UO(2), U(IV), Th, Am), in the soils of a small catchment in Cumbria, UK, for 2 years after their atmospheric deposition in a single hypothetical precipitation event. Export of radionuclides to streamwater is calculated to occur most readily following deposition of the dissolved elements at high water saturation of the catchment, when little incoming rainwater is required to make up the small moisture deficit of the organic surface horizon, and solutes can move to greater depths in the soil profile. Deposition when the catchment is drier, or of particulate radionuclides, leads to stronger retention. Radionuclide retention or transport depends on the strength of chemical interaction with the solid phases of the different soil horizons; this varies among the elements, and also with oxidation state, U(IV) species being more strongly retained than UO(2). For purely organic soils, the least strongly retained radionuclide is Cs, but the presence in the mineral soil horizon of small amounts of clay mineral with high selectivity towards Cs can markedly increase with high selectivity towards Cs can markedly increase its retention. For the actinides, binding by dissolved organic matter is important; for example, the rate of transport of Th to the stream is increased by more than two orders of magnitude by complexation with dissolved fulvic acid. The model assumptions suggest that, in the longer term, losses from the catchment of Co, Sr and Cs would take place on a time-scale of decades, whereas the actinides would be much more persistent.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号