首页 | 本学科首页   官方微博 | 高级检索  
     


A decade of fluvial morphodynamics: relocation and restoration of the Inde River (North-Rhine Westphalia,Germany)
Authors:Anna-Lisa Maaß,Verena Esser,Roy M. Frings,Frank Lehmkuhl  author-information"  >,Holger Schüttrumpf  author-information"  >
Affiliation:1.Institute of Hydraulic Engineering and Water Resources Management,RWTH Aachen University,Aachen,Germany;2.Department of Geography,RWTH Aachen University,Aachen,Germany
Abstract:

Background

Relocations and restorations do not only change the ecological passability and sediment continuity of a river but also its flow behavior and fluvial morphodynamics. Sediment transport processes and morphological development can be assessed with field measurements, also taking the transport of sediment-bounded contaminants as a tracer material for fluvial morphodynamics into account. The objective of this study was to determine the morphological development of the Inde River (a tributary of the Rur River in North-Rhine Westphalia, Germany) towards its pre-defined guiding principle after a relocation and restoration in 2005 AD.

Methods

The fluvial morphodynamics of the Inde River were analyzed over a period of almost 15 years taking sediment samples, analyzing echo soundings of the river’s bathymetry and determining the heavy metal content of the sediment as a tracer material for the morphological development.

Results

The results show that the relocation and restoration of the Inde River initiates new hydrodynamic processes, which cause morphological changes of the river widths, meander belts and channel patterns. The riverbed of the new Inde River has incised into the ground due to massive erosion, which has led to increased fine sediment transport in the downstream direction. The reasons for and consequences of this fine sediment transport are discussed and correlated to the sediment continuity of a river.

Conclusions

Overall, the new Inde River has reached its goal of being a natural river as a consequence of the relocation and restoration and has adapted its new conditions towards a dynamic morphological equilibrium.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号