首页 | 本学科首页   官方微博 | 高级检索  
     


Applying habitat and population-density models to land-cover time series to inform IUCN Red List assessments
Authors:Luca Santini  Stuart H. M. Butchart  Carlo Rondinini  Ana Benítez-López  Jelle P. Hilbers  Aafke M. Schipper  Mirza Cengic  Joseph A. Tobias  Mark A. J. Huijbregts
Affiliation:1. Department of Environmental Science, Institute for Wetland and Water Research, Faculty of Science, Radboud University, P.O. Box 9010, NL-6500 GL Nijmegen, The Netherlands;2. BirdLife international, David Attenborough Building, Pembroke Street, Cambridge, CB23QZ U.K.

Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB23EJ U.K.;3. Department of Biology and Biotechnologies, Sapienza Università di Roma, Viale dell'Università 32, 00185 Rome, Italy;4. PBL Netherlands Environmental Assessment Agency, P.O. Box 30314, 2500 GH The Hague, The Netherlands;5. Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7PY U.K.

Abstract:The IUCN (International Union for Conservation of Nature) Red List categories and criteria are the most widely used framework for assessing the relative extinction risk of species. The criteria are based on quantitative thresholds relating to the size, trends, and structure of species’ distributions and populations. However, data on these parameters are sparse and uncertain for many species and unavailable for others, potentially leading to their misclassification or classification as data deficient. We devised an approach that combines data on land-cover change, species-specific habitat preferences, population abundance, and dispersal distance to estimate key parameters (extent of occurrence, maximum area of occupancy, population size and trend, and degree of fragmentation) and hence predict IUCN Red List categories for species. We applied our approach to nonpelagic birds and terrestrial mammals globally (∼15,000 species). The predicted categories were fairly consistent with published IUCN Red List assessments, but more optimistic overall. We predicted 4.2% of species (467 birds and 143 mammals) to be more threatened than currently assessed and 20.2% of data deficient species (10 birds and 114 mammals) to be at risk of extinction. Incorporating the habitat fragmentation subcriterion reduced these predictions 1.5–2.3% and 6.4–14.9% (depending on the quantitative definition of fragmentation) for threatened and data deficient species, respectively, highlighting the need for improved guidance for IUCN Red List assessors on the application of this aspect of the IUCN Red List criteria. Our approach complements traditional methods of estimating parameters for IUCN Red List assessments. Furthermore, it readily provides an early-warning system to identify species potentially warranting changes in their extinction-risk category based on periodic updates of land-cover information. Given our method relies on optimistic assumptions about species distribution and abundance, all species predicted to be more at risk than currently evaluated should be prioritized for reassessment.
Keywords:birds  conservation  data deficient species  extinction risk  mammals  remote sensing  aves  conservación  especies con deficiencia de datos  mamíferos  riesgo de extinción  teledetección  鸟类  保护  数据缺乏的物种  灭绝风险  遥感  哺乳动物
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号