首页 | 本学科首页   官方微博 | 高级检索  
     检索      

厌氧氨氧化污泥中氨氧化的潜在电子受体
引用本文:李祥,林兴,王凡,袁砚,黄勇,袁怡,毕贞,刘忻,杨朋兵.厌氧氨氧化污泥中氨氧化的潜在电子受体[J].环境科学,2017,38(7):2941-2946.
作者姓名:李祥  林兴  王凡  袁砚  黄勇  袁怡  毕贞  刘忻  杨朋兵
作者单位:苏州科技大学环境科学与工程学院, 苏州 215009;苏州科技大学环境生物技术研究所, 苏州 215009,苏州科技大学环境科学与工程学院, 苏州 215009;苏州科技大学环境生物技术研究所, 苏州 215009,苏州科技大学环境科学与工程学院, 苏州 215009;苏州科技大学环境生物技术研究所, 苏州 215009,苏州科技大学环境科学与工程学院, 苏州 215009;苏州科技大学环境生物技术研究所, 苏州 215009,苏州科技大学环境科学与工程学院, 苏州 215009;苏州科技大学环境生物技术研究所, 苏州 215009,苏州科技大学环境科学与工程学院, 苏州 215009;苏州科技大学环境生物技术研究所, 苏州 215009,苏州科技大学环境科学与工程学院, 苏州 215009;苏州科技大学环境生物技术研究所, 苏州 215009,苏州科技大学环境科学与工程学院, 苏州 215009;苏州科技大学环境生物技术研究所, 苏州 215009,苏州科技大学环境科学与工程学院, 苏州 215009;苏州科技大学环境生物技术研究所, 苏州 215009
基金项目:国家重点研发计划项目(2016YFC0401103);国家自然科学基金项目(51478284,51408387);江苏省特色优势学科二期项目;江苏省水处理技术与材料协同创新中心项目;苏州市分离净化材料与技术重点实验室项目(SZS201512)
摘    要:通过接种亚硝酸盐型厌氧氨氧化污泥,投加潜在电子受体(亚硝酸盐、Fe~(3+)和硫酸盐)研究了厌氧条件下氨氮氧化的潜在电子受体.结果表明,亚硝酸盐是厌氧氨氧化最适合的电子受体,能够与氨氮在短暂的时间内完全反应;在亚硝酸盐缺乏的情况下,厌氧氨氧化污泥中微生物利用自身细胞有机物将产物硝酸盐转化为亚硝酸盐参与氨氮转化;Fe~(3+)与硫酸盐在氨氮氧化后期出现转化,但是直接还是间接参与还需进一步研究.厌氧氨氧化污泥对氨氮产生过量氧化之前必须以亚硝酸盐为电子受体进行微生物活性激活,并且好氧氨氧化菌和亚硝化菌出现增长,推测微生物产生了H_2O_2.该现象并不可长久持续.虽然其氧化速率较慢,但是过量氧化现象较为明显.因此厌氧氨氧化污泥中肯定存在氨氮过量氧化的现象.厌氧氨氧化污泥对电子的利用顺序是亚硝酸盐、硝酸盐、Fe~(3+)和硫酸盐.

关 键 词:厌氧氨氧化  电子受体  氨氮氧化  亚硝酸盐  硝酸盐
收稿时间:2017/1/18 0:00:00
修稿时间:2017/2/21 0:00:00

Ammonia Oxidation with Potential Electron Acceptor in ANAMMOX Sludge
LI Xiang,LIN Xing,WANG Fan,YUAN Yan,HUANG Yong,YUAN Yi,BI Zhen,LIU Xin and YANG Peng-bing.Ammonia Oxidation with Potential Electron Acceptor in ANAMMOX Sludge[J].Chinese Journal of Environmental Science,2017,38(7):2941-2946.
Authors:LI Xiang  LIN Xing  WANG Fan  YUAN Yan  HUANG Yong  YUAN Yi  BI Zhen  LIU Xin and YANG Peng-bing
Institution:School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;Institute of Environmental Biotechnology, Suzhou University of Science and Technology, Suzhou 215009, China,School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;Institute of Environmental Biotechnology, Suzhou University of Science and Technology, Suzhou 215009, China,School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;Institute of Environmental Biotechnology, Suzhou University of Science and Technology, Suzhou 215009, China,School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;Institute of Environmental Biotechnology, Suzhou University of Science and Technology, Suzhou 215009, China,School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;Institute of Environmental Biotechnology, Suzhou University of Science and Technology, Suzhou 215009, China,School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;Institute of Environmental Biotechnology, Suzhou University of Science and Technology, Suzhou 215009, China,School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;Institute of Environmental Biotechnology, Suzhou University of Science and Technology, Suzhou 215009, China,School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;Institute of Environmental Biotechnology, Suzhou University of Science and Technology, Suzhou 215009, China and School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;Institute of Environmental Biotechnology, Suzhou University of Science and Technology, Suzhou 215009, China
Abstract:The ammonium oxidation by potential electron acceptors(NO2-, Fe3+ and SO42-) in ANAMMOX sludge was studied by inoculating nitrite-dependent ANAMMOX sludge. The results showed that nitrite was the most suitable electron acceptor for ANAMMOX bacteria, which could completely react within a short time. Nitrate was converted into nitrite by ANAMMOX sludge using the organic as electron donor and then participated in ammonia conversion, in the absence of nitrite. Fe3+ and SO42- conversion occurred at the end of ammonium oxidation, but its direct or indirect participation requires further study. Microbial activity must be activated through addition of nitrite as electron acceptor before ammonia excess oxidation occurred. Aerobic ammonia oxidizing bacteria and nitrite oxidizing bacteria grew during this period. This phenomenon did not last, and the microbial production of H2O2 was speculated. Although the oxidation rate was slow, the phenomenon of ammonium excess oxidation was obvious. Therefore, the oxidation of excess ammonia was for sure present in ANAMMOX sludge. The order of electron acceptor use by ANAMMOX sludge was NO2-, NO3-, SO42- and Fe3+.
Keywords:ANAMMOX  electron acceptor  ammonia oxidation  nitrite  nitrate
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号