首页 | 本学科首页   官方微博 | 高级检索  
     


Response of Algal Biomass to Large‐Scale Nutrient Controls in the Clark Fork River,Montana, United States1
Authors:Michael W. Suplee  Vicki Watson  Walter K. Dodds  Chris Shirley
Affiliation:1. Respectively, Environmental Science Specialist, Montana Department of Environmental Quality, 1520 East 6th Ave., Helena, Montana 59620;2. Professor, Environmental Studies Program, University of Montana, Missoula, Montana, 59812;3. Professor, Division of Biology, Kansas State University, Manhattan, Kansas 66506
Abstract:Suplee, Michael W., Vicki Watson, Walter K. Dodds, and Chris Shirley, 2012. Response of Algal Biomass to Large‐Scale Nutrient Controls in the Clark Fork River, Montana, United States. Journal of the American Water Resources Association (JAWRA) 48(5): 1008‐1021. DOI: 10.1111/j.1752‐1688.2012.00666.x Abstract: Nutrient pollution is an ongoing concern in rivers. Although nutrient targets have been proposed for rivers, little is known about long‐term success of programs to decrease river nutrients and algal biomass. Twelve years of summer data (1998‐2009) collected along 383 km of the Clark Fork River were analyzed to ascertain whether a basin‐wide nutrient reduction program lowered ambient total nitrogen (TN) and total phosphorus (TP) concentrations, and bottom‐attached algal biomass. Target nutrient and algal biomass levels were established for the program in 1998. Significant declines were observed in TP but not TN along the entire river. Downstream of the city of Missoula, TP declined below a literature‐derived TP saturation breakpoint and met program targets after 2005; TN was below targets since 2007. Algal biomass also declined significantly below Missoula. Trends there likely relate to the city’s wastewater facility upgrades, despite its 20% population increase. Upstream of Missoula, nutrient reductions were less substantial; still, TP and TN declined toward saturation breakpoints, but no significant reductions in algal biomass occurred, and program targets were not met. The largest P‐load reduction to the river was from a basin‐wide phosphate laundry detergent ban set 10 years before, in 1989. We document that nutrient reductions in rivers can be successful in controlling algal biomass, but require achievement of concentrations below saturation and likely close to natural background.
Keywords:algae  rivers/streams  monitoring  time series analysis  nutrients  environmental regulations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号