首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Uptake and loss of dissolved 109Cd and 75Se in estuarine macroinvertebrates
Authors:Alquezar Ralph  Markich Scott J  Twining John R
Institution:Department of Environmental Sciences, University of Technology Sydney, P.O. Box 123 Broadway 2007, NSW, Australia. r.alquezar@cqu.edu.au
Abstract:Semaphore crabs (Heloecius cordiformis), soldier crabs (Mictyris platycheles), ghost shrimps (Trypaea australiensis), pygmy mussels (Xenostrobus securis), and polychaetes (Eunice sp.), key benthic prey items of predatory fish commonly found in estuaries throughout southeastern Australia, were exposed to dissolved (109)Cd and (75)Se for 385 h at 30 k Bq/l (uptake phase), followed by exposure to radionuclide-free water for 189 h (loss phase). The whole body uptake rates of (75)Se by pygmy mussels, semaphore crabs and soldier crabs were 1.9, 2.4 and 4.1 times higher than (109)Cd, respectively. There were no significant (P>0.05) differences between the uptake rates of (75)Se and (109)Cd for ghost shrimps and polychaetes. The uptake rates of (109)Cd and (75)Se were highest in pygmy mussels; about six times higher than in soldier crabs for (109)Cd and in polychaetes for (75)Se - the organisms with the lowest uptake rates. The loss rates of (109)Cd and (75)Se were highest in semaphore crabs; about four times higher than in polychaetes for (109)Cd and nine times higher than in ghost shrimps for (75)Se - the organisms with the lowest loss rates. The loss of (109)Cd and (75)Se in all organisms was best described by a two (i.e. short and a longer-lived) compartment model. In the short-lived, or rapidly exchanging, compartment, the biological half-lives of (75)Se (16-39 h) were about three times greater than those of (109)Cd (5-12h). In contrast, the biological half-lives of (109)Cd in the longer-lived, or slowly exchanging compartment(s), were typically greater (1370-5950 h) than those of (75)Se (161-1500 h). Semaphore crabs had the shortest biological half-lives of both radionuclides in the long-lived compartment, whereas polychaetes had the greatest biological half-life for (109)Cd (5950 h), and ghost shrimps had the greatest biological half-life for (75)Se (1500 h). This study provides the first reported data for the biological half-lives of Se in estuarine decapod crustaceans. Moreover, it emphasises the importance of determining metal(loid) accumulation and loss kinetics in keystone prey items, which consequently influences their trophic transfer potential to higher-order predators.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号