首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Minimum turbulence assumptions and u* and L estimation for dispersion models during low-wind stable conditions
Authors:Steven R Hanna  Biswanath Chowdhury
Institution:1. Hanna Consultants , Kennebunkport , ME , USA;2. Sage Management , Princeton , NJ , USA
Abstract:The U.S. Environmental Protection Agency (EPA) short-distance dispersion model, AERMOD, has been shown to overpredict by a factor of as much as 10 when compared with observed concentrations from continuous releases at the Oak Ridge, TN (OR), and Idaho Falls, ID (IF), field experiments during stable periods when wind speeds often dropped below 1 m/sec. Some of this overprediction tendency can be reduced by revising AERMOD's meteorological preprocessor's parameterizations of the friction velocity, u * , during low-wind stable conditions, thus increasing the calculated σ v and σ w and hence the lateral and vertical dispersion rates. Observations show that as the mean wind speed approaches zero at night, there is always significant σ v and σ w over time periods of 15 to 60 min, while standard Monin–Obukhov Similarity Theory (MOST) predicts that σ v and σ w will approach zero. This paper focuses on the u * estimation methods and the minimum turbulence (σ v and σ w ) assumptions in AERMOD (beta option 4) and two widely used U.S. operational dispersion models, AERMOD (v12345) and SCICHEM. The U.S. EPA has provided results of its tests with the OR and IF data, with its base AERMOD version and its December 2012 modified versions, which assume adjustments to the low-wind u * and increases in the minimum σ v parameterization. SCICHEM has relatively small mean bias for both data sets. The revised AERMOD shows much less mean bias, agreeing more with SCICHEM.

Implications:

Suggestions are made for improvements to dispersion models such as AERMOD to correct overpredictions during light-wind stable conditions. Methods for estimating u*, L, and the minimum turbulence parameters (σv and σw) are reviewed and compared. SCICHEM and the current operational version and an optional beta version (December 2012) of AERMOD are evaluated with tracer data from low-wind stable field experiments in Idaho Falls and Oak Ridge. It is seen that the operational version of AERMOD overpredicts by a factor of 2 to 10, while the optional beta version of AERMOD and SCICHEM have much less bias.

Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号