首页 | 本学科首页   官方微博 | 高级检索  
     

基于人工神经网络方法的水质预测初探
引用本文:树锦. 基于人工神经网络方法的水质预测初探[J]. 环境科学与管理, 2006, 31(1): 44-46
作者姓名:树锦
作者单位:河海大学,环境科学与工程学院,江苏,南京,210098
摘    要:常规的水质预测模型因存在许多简化与假定而限制了其精度与实用性的提高.文章通过引入神经网络技术来建立水质预测模型,分别采用LM算法和RBF算法来提高预测的精度.结果表明,在建立三门峡水库流量和水质的输入响应关系模型的实际应用中,RBF算法取得了较好的预测效果.

关 键 词:神经网络模型  Levenberg-Marquardt算法  RBF算法  水质预测  人工神经  网络方法  水质预测  Water Quality  Predict  Network Model  预测效果  应用  响应关系模型  输入  流量  三门峡水库  结果  算法  网络技术  精度  简化  存在  预测模型
文章编号:1673-1212(2006)01-0044-03
收稿时间:2005-11-14
修稿时间:2005-11-14

Using Neutral Network Model to Predict Water Quality
SHU Jin. Using Neutral Network Model to Predict Water Quality[J]. Environmental Science and Management, 2006, 31(1): 44-46
Authors:SHU Jin
Affiliation:1.College of environmental science and engineering, Hehai University, Nanjing 210098, China
Abstract:The precision and practicability of general water quality model are limited by many simplifications and assumptions. In this paper, one water quality model was developed using neutral network technology. LM algorithm and RBF algorithm were used to increase predictive precision. The model was applied to establish the relations between water quantity and water quality of Sanmen Gorge reservoir. The calculated results show that better prediction was gained using RBF algorithm.
Keywords:neutral network model levenberg-marquardt algorithm RBF algorithm water quality prediction
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号