首页 | 本学科首页   官方微博 | 高级检索  
     


Response of Soil Inorganic Nitrogen to Land Use and Topographic Position in the Cofre de Perote Volcano (Mexico)
Authors:Adolfo Campos C.
Affiliation:1. Instituto de Ecología, A. C., Apartado Postal 63, CP 91000, Veracruz, Xalapa, Mexico
Abstract:This study addressed the effects of land use and slope position on soil inorganic nitrogen and was conducted in small watersheds. The study covered three land use types: tropical cloud forest, grassland, and coffee crop. To conduct this research, typical slope small watersheds were chosen in each land use type. Slopes were divided into three positions: shoulder, backslope, and footslope. At the center of each slope position, soil sampling was carried out. Soil inorganic nitrogen was measured monthly during a period of 14 months (July 2005–August 2006) with 11 observations. Significant differences in soil NH4 +–N and NO3 –N content were detected for both land use and sampling date effects, as well as for interactions. A significant slope position-by-sampling date interaction was found only in coffee crop for NO3 –N content. In tropical cloud forest and grassland, high soil NH4 +–N and low NO3 –N content were recorded, while soil NO3 –N content was high in coffee crop. Low NO3 –N contents could mean a substantial microbial assimilation of NO3 –N, constituting an important mechanism for nitrogen retention. Across the entire land use set, the relationship between soil temperature and soil inorganic N concentration was described by an exponential decay function (N = 33 + 2459exp−0.23T, R 2 = 0.44, P < 0.0001). This study also showed that together, soil temperature and gravimetric soil water content explained more variation in soil inorganic N concentration than gravimetric soil water content alone.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号