Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment |
| |
Authors: | Kangying Guo Baoyu Gao Jie Wang Jingwen Pan Qinyan Yue Xing Xu |
| |
Affiliation: | 1Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China |
| |
Abstract: | •PSBF performed better than PAC and PAM in CODCr removals. •PSBF was more insensitive to changing pH than PAC and PAM. •PAC could remove humic acid-like pollutants and dye particles. •PSBF was efficient in removing tryptophan-like pollutants from PPDW. •A secondary coagulation-flocculation process (PAC→PSBF) is proposed here. In our previous studies, several papermaking sludge-based flocculants (PSBFs) were synthesized from wood pulp papermaking sludge. The structure-activity relationships of the PSBFs have been investigated in simulated dye wastewater treatment, but their efficiencies in practical printing and dyeing wastewater (PPDW) treatment are unknown. Herein, an PSBF was prepared, and its performance is discussed in comparison to polyaluminium chloride (PAC) and polyacrylamide (PAM) in PPDW treatment. The PSBF was used in three ways: as an independent flocculant, as a PAC aid, or used to treat the effluent of the PAC system. The results indicated that adding PSBF alone produced similar color and chemical oxygen demand (CODCr) removals as the PAC system alone, but PSBF performed better than PAC when the pH of PPDW was higher than 7.0. Adding PSBF as a PAC aid improved the color, CODCr and turbidity removals, but the elimination efficiencies were slightly lower than those of the PAC+ PAM system. However, when PSBF was used as a flocculant to treat the effluent of the PAC system (PAC→PSBF), the effluent qualities were enhanced. Compared with the PAC system, the color and CODCr removals of PAC→PSBF system increased by 16.21% and 13.26%, respectively. The excitation and emission matrix fluorescence results indicated that PSBF removed tryptophan-like pollutants more efficiently than PAC. Considering the pH requirements of the subsequent bioreactor treatment in practice, the PAC→PSBF system were also investigated at the PPDW pH level of 7.0. Its maximum removal efficiencies of color, CODCr and turbidity were 90.17%, 32.60% and 82.50%, respectively. |
| |
Keywords: | Practical wastewater treatment Commercial coagulant/flocculant Secondary coagulation-flocculation process Chemical oxygen demand Coagulation-flocculation mechanism |
|
| 点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息 |
|
点击此处可从《Frontiers of Environmental Science & Engineering》下载全文 |
|