首页 | 本学科首页   官方微博 | 高级检索  
     检索      


UV-LED/P25-based photocatalysis for effective degradation of isothiazolone biocide
Authors:Xinzheng Li  Zhiming Li  Zhihui Xing  Zhimin Song  Bei Ye  Zhengming Wang  Qianyuan Wu
Abstract: ? UV-LED with shorter wavelength was beneficial for photocatalytic degradation. ? SRNOM dramatically inhibit the degradation. ? ·OH acts as the active radical in photocatalytic degradation. ? Degradation mainly undergoes oxidation, hydrolysis and chain growth reactions. In this work, LED-based photocatalysis using mixed rutile and anatase phase TiO2 (P25) as the photocatalyst could effectively remove 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT) and methylisothiazolone (MIT) simultaneously, with removal efficiencies above 80% within 20 min. The photocatalytic degradation of both CMIT and MIT could be modeled using a pseudo-first-order rate equation. The photocatalytic degradation rates of CMIT and MIT under LED280 illumination were higher than under LED310 or LED360 illumination. At concentrations below 100 mg/L, the degradation rate of CMIT and MIT under LED illumination significantly increased with increasing catalyst dosage. Additionally, the effects of the chloride ion concentration, alkalinity and dissolved organic matter on the photocatalytic degradation reaction were also investigated. The ·OH free radicals were determined to play the primary role in the photocatalytic degradation reaction, with a degradation contribution of >95%. The photocatalytic degradation of CMIT and MIT mainly occurred via oxidation, hydrolysis, and chain growth reactions. Finally, the possible photocatalytic degradation pathways of CMIT and MIT over LED/P25 are proposed.
Keywords:Degradation  Photocatalytic  LED  CMIT  P25  
点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Environmental Science & Engineering》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号