首页 | 本学科首页   官方微博 | 高级检索  
     检索      

典型POPs的生物降解修复技术研究与发展
引用本文:吴海珍,韦朝海,周盛.典型POPs的生物降解修复技术研究与发展[J].生态环境,2012,21(1):166-171.
作者姓名:吴海珍  韦朝海  周盛
作者单位:1. 华南理工大学生物科学与工程学院,广东广州,510006
2. 华南理工大学环境科学与工程学院,广东广州,510006
3. 广西玉林师范学院,广西玉林,537000
基金项目:国家教育部高校博士点基金,国家自然科学基金,国家863计划项目,广东省科技计划项目
摘    要:生物吸附与降解是解决持久性有机污染物(POPs)最有潜力的方法之一,有必要介绍利用微生物把目标污染物转化为易降解的物质甚至矿化的POPs修复原理及其技术。对此,概述了近年来国内外基于微生物通过膜融合、胞质融合和核融合形成能够降解POPs的杂种细胞的细胞融合技术;基于降解性质粒的相容性,把能够降解不同污染物的质粒组合到一个菌种中,形成多质粒的新菌种,使微生物由于代谢途径的改变能够矿化POPs的基因工程菌构建技术;基于通过某些载体把酶固定于其中实现活性稳定、可以回收及可重复利用的酶固定化技术,以及基于降解菌活性酶分子亚基置换、降解菌活性酶的定点突变、降解酶的体外定向进化这几方面的酶构建技术;进一步分析基于分子生物学提高POPs生物修复能力的原理,指出经生物技术改造的工程菌和固定化酶未能进入实际应用的障碍所在。以多溴联苯醚(PBDEs)的微生物细胞吸收和降解机理作为典型POPs生物修复的案例,强调生物降解的过程强化需要建立多尺度上功能方面的适合;提出了分子生物学与基因工程学的结合在解决POPs环境污染方面未来的基础科学问题与研究思路。综合上述,典型POPs的生物修复技术的构建需要考虑宏观污染物协同降解的工艺理论,在基因水平、分子水平、反应器水平及工程水平上追求更高功能方面的适合。

关 键 词:生物修复  持久性污染物  多溴联苯醚  细胞融合技术  酶固定化技术  基因工程  体外定向进化

Research and development of bioremediation technology for persistent organic pollutants degradation
WU Haizhen , WEI Chaohai , ZHOU Sheng.Research and development of bioremediation technology for persistent organic pollutants degradation[J].Ecology and Environmnet,2012,21(1):166-171.
Authors:WU Haizhen  WEI Chaohai  ZHOU Sheng
Institution:1. College of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510006, China; 2. College of Environmental Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China; 3. Guangxi Yulin Normal College, Yulin, Guangxi 537000, China
Abstract:Bio-absorption and biodegradation are recognized as promising methods for the treatment of persistent organic pollutants (POPs). This review describes the recent advances on some biodegradation techniques that utilize microorganisms to degrade or even mineralize the target pollutants. These include (i) the construction of nuclear-cytoplasmic hybrid cells formed according to membrane, nuclear, and cytoplasmic cell fusion; (ii) the construction of the genetically engineered bacteria composed of multi-plasmids that are capable of degrading different pollutants due to the change of metabolic pathway; (iii) the technique of enzyme immobilization using carriers for improving enzyme stability, recycling and reuse; and (iv) the construction ofbiodegradation enzymes by subunit molecu- lar replacement, enzyme-directed mutagenesis, and in vitro evolution of enzymes. In addition, the principles for improving POPs bioremediation by molecular biology are analyzed. The obstacles for the practical application of the genetically engineered microor- ganisms and immobilized enzymes are presented. Based on the analysis of polybrominated diphenyl ethers (PBDEs) degradation as a typical case of bioremediation of POPs, it is stressed that it is necessary to establish multi-scale functions for the strengthen of biode- gradation process. The fundamental scientific issues to resolve POPs pollution problems by the combination of molecular biology and genetic engineering are also proposed. This means that the typical POPs bioremediation techniques emphasize the need to build a synergic degradation theory for degradation of both POPs and macro-pollutants, and the pursuit of more functions with respect to the gene level, molecular level, reactor level and project level.
Keywords:Bioremediation  POPs  PBDEs  cell fusion technique  immobilization technique  gene engineering  directed evolution ofenzyme in vitro
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号