首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Plume analysis from field evaluations of a portable air quality monitoring system
Authors:Joseph P Marto  Jie Zhang  James J Schwab
Institution:1. Atmospheric Science Research Center, University at Albany, State University of New York , Albany, NY, USA jmarto22@gmail.comORCID Iconhttps://orcid.org/0000-0002-0920-6262;3. Department of Atmospheric Science, Colorado State University , Fort Collins, CO, USA;4. Atmospheric Science Research Center, University at Albany, State University of New York , Albany, NY, USA
Abstract:ABSTRACT

Near-road measurements in Rochester, NY with a Portable Air Quality Monitoring System indicate a significant plume control of PM2.5 black carbon (BC) concentrations. This study evaluates the performance of two portable air quality enclosures deployed at collocated research sites to determine their accuracy and usefulness in field deployments, and specifically in pollution plume analysis. One system deployed collocated sensors for measurement of particulate matter mass concentration (Thermo pDR 1500 against Tapered Element Oscillating Microbalance (TEOM) measurement) and the second system deployed sensors for measurement of black carbon (Magee AE33 aethalometer and Brechtel Tricolor Absorption Photometer) in ambient and near-road locations in Rochester, New York, respectively. While the optical PM2.5 sensors tended to be biased in their determination of concentration by ~15%, they followed changes and trends in concentration very well. The black carbon sensors in the portable systems agreed very well with each other and with the collocated sensor. As a case study to determine the contribution from statistically significant short-lived excursions of pollutant concentration, Morlet wavelet analysis was performed on data from the portable system sensors. Black carbon was found to be strongly influenced by plume behavior with significant plume excursions representing just over 12% of all data points and contributing on average 1 µg/m3 of black carbon above ambient concentrations.

Implications: This paper first evaluates two air pollutant monitoring enclosures with wide applicability including near-road detection of pollutants. Then, we present a novel method to designate isolate statistically significant excursions in air pollution concentration which can be used to determine the impact of pollutant plumes as observed in PM and black carbon behavior near road.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号