首页 | 本学科首页   官方微博 | 高级检索  
     

进化蚁群算法及其在湖泊富营养化评价中的应用
引用本文:邹长武,金相灿,熊建秋,李祚泳. 进化蚁群算法及其在湖泊富营养化评价中的应用[J]. 环境科学研究, 2006, 19(5): 149-153
作者姓名:邹长武  金相灿  熊建秋  李祚泳
作者单位:1.四川大学,水电学院,四川,成都,610065;成都信息工程学院,环境工程系,四川,成都,610041
基金项目:国家重点基础研究发展计划(973计划) , 成都信息工程学院校科研和教改项目
摘    要:蚁群算法是近年提出的一种新型的仿生算法,已在许多组合优化问题中得到成功应用,但是传统蚁群算法解决连续优化问题的能力较差.为提高其解决连续优化问题的能力,拓宽应用范围,引入带可变邻域搜索项的进化策略对其进行改进,进而提出进化蚁群算法.随后从2个方面对进化蚁群算法的性能进行测试:①采用多个经典测试函数测试进化蚁群算法用于解决连续优化问题的效果;②将进化蚁群算法应用于千岛湖的富营养化程度评价,以测试该方法解决实际问题的效果.函数测试结果表明,进化蚁群算法可以成功用于解决连续优化问题,并且优化过程所需初始个体的数量少,优化速度快;千岛湖富营养化程度评价实例的结果表明,进化蚁群算法应用于湖泊富营养化评价是可行的,可用于解决实际问题. 

关 键 词:蚁群算法   进化策略   进化蚁群算法   湖泊富营养化
文章编号:1001-6929(2006)05-0149-05
收稿时间:2005-10-30
修稿时间:2005-10-302006-03-29

Evolutionary Ant Colony Algorithm and Its Application in Evaluating the Eutrophic State of Lake
ZOU Chang-wu,JIN Xiang-can,XIONG Jian-qiu and LI Zuo-yong. Evolutionary Ant Colony Algorithm and Its Application in Evaluating the Eutrophic State of Lake[J]. Research of Environmental Sciences, 2006, 19(5): 149-153
Authors:ZOU Chang-wu  JIN Xiang-can  XIONG Jian-qiu  LI Zuo-yong
Affiliation:1.Hydraulic Engineering Institute,Sichuan University,Chengdu 610065,China;Environmental Engineering Department,Chengdu University of Information Technology,Chengdu 610041,China2.Chinese Research Academy of Environmental Sciences,Beijing 100012,China
Abstract:Ant colony algorithm(ACA),a kind of new bionics algorithm which has been used in many optimal combination problems successfully,is not good at solving the continuous optimization problems.In order to improve its ability of solving the continuous optimization problems,evolutionary strategy(ES) was taken to modify ACA,and the evolutionary ant colony algorithm(EACA) proposed.After that,two aspects of ways were taken to test EACA.Firstly,several typical functions were used to test whether the EACA can solve the continuous optimization problems;secondly,EACA is applied to evaluate the eutrophic state of Qiandao Lake.The results show that EACA can solve the continuous optimization problem with little initial answer and high speed and can be used to evaluate eutrophic state of lake effectively.
Keywords:ant colony algorithm   evolutionary strategy   evolutionary ant colony algorithm   lake eutrophication
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《环境科学研究》浏览原始摘要信息
点击此处可从《环境科学研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号