首页 | 本学科首页   官方微博 | 高级检索  
     

FMF的火焰显著性检测
引用本文:李云,张晴,沈子豪,左保川. FMF的火焰显著性检测[J]. 中国安全科学学报, 2019, 0(5): 56-61
作者姓名:李云  张晴  沈子豪  左保川
作者单位:上海应用技术大学计算机科学与信息工程学院
基金项目:国家自然科学基金资助(61401281,61806126,41671402);上海应用技术大学中青年教师科技人才发展基金资助(ZQ2018-23)
摘    要:为准确定位火源点,实现火灾预警,提出一种基于人眼视觉注意机制的实时监测火灾预警方法。首先,根据图像对抗理论,提取视频序列中每一帧图像的亮度和颜色特征;其次,运用像素级显著性检测算法,构建描述特征信息的多尺度空间高斯金字塔;然后,运用跨尺度特征相加方法,融合中心-邻域对比度金字塔,得到静态显著性图;最后,结合动态帧差法,将多特征融合(FMF)算法得到的显著性图作动态帧差,寻找视频帧中属于火焰的区域,在公开的数据集上就4种评价指标与6种代表性算法作对比。结果表明:FMF算法通过显著性分析方法描述多尺度空间特征信息,其鲁棒性更强;与6种算法相比,FMF算法在准确率和漏检率上有较明显的优势,且能准确识别与定位火焰,防范火灾的发生。

关 键 词:火焰检测  对抗理论  显著性检测  多特征融合(FMF)  动态帧差法

Flame saliency detection based on FMF
LI Yun,ZHANG Qing,SHEN Zihao,ZUO Baochuan. Flame saliency detection based on FMF[J]. China Safety Science Journal, 2019, 0(5): 56-61
Authors:LI Yun  ZHANG Qing  SHEN Zihao  ZUO Baochuan
Affiliation:(School of Computer Science and Information Engineering, Shanghai Institute ofTechnology, Shanghai 201418, China)
Abstract:To accurately locate the fire source and achieve early warning of fire, a real time fire warning monitoring method based on human visual attention mechanism was developed. Firstly, the brightness and color features of each frame of the video sequence were extracted according to image opponent theory. Secondly, pixel-level saliency detection algorithm was applied to construct a multi-scale spatial Gaussian pyramid which describes feature information. Then, the static saliency map was generated by merging centerneighbor contrast pyramid through the cross-scale feature addition method. Finally, the saliency map obtained from FMF algorithm was used as the dynamic frame difference based on the dynamic frame difference method to find the region of flame on video frames, and the proposed approach was compared with 6 representative algorithms in terms of 4 performance criteria on public datasets. The results show that FMF algorithm demonstrates stronger robustness in describing multi-scale spatial feature information through the saliency analysis method, and with obvious advantages in accuracy and missed rate compared with other algorithms, it can accurately identify and locate the flame so as to prevent the occurrence of fire accidents.
Keywords:flame detection  opponent theory  saliency detection  fusion of multi-feature ( FMF)  dynamic frame difference method
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号