首页 | 本学科首页   官方微博 | 高级检索  
     检索      


ENERGY BALANCE OF A CORN RESIDUE-COVERED FIELD DURING SNOWMELT1
Authors:T J Sauer  J L Hatfield  J H Prueger  S D Logsdon
Abstract:ABSTRACT: Transport of agricultural chemicals in runoff and recharge waters from snowmelt and soil thawing may represent a significant event in terms of annual contaminant loadings in temperate regions. Improved understanding of the melt dynamics of shallow snowpacks is necessary to fully assess the implications for water quality. The objective of this study was to measure the energy balance components of a corn (Zea mays L.) stubble field during the melting of its snowcover. Net radiation (Rn), soil (G), sensible (H), and latent (Q) heat fluxes were measured in a field near Ames, Iowa, during the winter of 1994–1995. Energy consumed by melting including change in energy storage of the snowpack was determined as the residual of the measured energy balance. There was continuous snowcover at the field site for 71 days (maximum depth = 222 mm) followed by an open period of 11 days before additional snowfall and a second melt period. The net radiation and snow melt/energy storage change (5) terms dominated the energy balance during both measurement intervals. Peak daily sensible and latent heat fluxes were below 100 W m?2 on all days except the last day of the second melt period. There was good agreement between predicted and measured values of H and Q during the melting of an aged snow layer but poorer agreement during the melt of fresh snow. Both snowpacks melted rapidly and coincident changes in soil moisture storage were observed. Improved estimates of Q and H, especially for partially open surfaces, will require better characterization of the surface aerodynamic properties and spatially-representative surface temperature measurements.
Keywords:snow and ice hydrology  agricultural hydrology  evaporation  energy balance  soil temperature  soil moisture
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号