首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rapid method for on-site determination of phenolic contaminants in water using a disposable biosensor
Authors:Yuanting Li  Dawei Li  Wei Song  Meng Li  Jie Zou  Yitao Long
Institution:1. Key Laboratory for Advanced Materials & Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China; 2. Jiangsu Provincial Supervising & Testing Research Institute for Products Quality, Nanjing 210007, China
Abstract:A disposable biosensor was fabricated using single-walled carbon nanotubes, gold nanoparticles and tyrosinase (SWCNTs-AuNPs-Tyr) modified screen-printed electrodes. The prepared biosensor was applied to the rapid determination of phenolic contaminants within 15 minutes. The SWCNTs-AuNPs-Tyr bionanocomposite sensing layer was characterized with scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry methods. The characterization results revealed that SWCNTs could lead to a high loading of tyrosinase (Tyr) with the large surface area and the porous morphology, while AuNPs could retain the bioactivity of Tyr and enhance the sensitivity. The detection conditions, including working potential, pH of supporting electrolyte and the amount of Tyr were optimumed. As an example, the biosensor for catechol determination displayed a linear range of 8.0 × 10-8 to 2.0 × 10-5 mol·L-1 with a detection limit of 4.5 × 10-8 mol·L-1 (S/N = 3). This method has a rapid response time within 10 s, and shows excellent repeatability and stability. Moreover, the resulting biosensor could be disposable, low-cost, reliable and easy to carry. This kind of new Tyr biosensor provides great potential for rapid, on-site and cost-effective analysis of phenolic contaminants in environmental water samples.
Keywords:on-site determination  tyrosinase biosensor  phenolic contaminants  single-walled carbon nanotubes  gold nanoparticles  screen-printed electrodes  
本文献已被 SpringerLink 等数据库收录!
点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Environmental Science & Engineering》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号