首页 | 本学科首页   官方微博 | 高级检索  
     


Implications of differing input data sources and approaches upon forest carbon stock estimation
Authors:Michael A. Wulder  Joanne C. White  Graham Stinson  Thomas Hilker  Werner A. Kurz  Nicholas C. Coops  Ben?it St-Onge  J. A. Trofymow
Affiliation:1. Canadian Forest Service (Pacific Forestry Center), Natural Resources Canada, 506 West Burnside Rd., Victoria, BC, V8Z 1M5, Canada
2. Department of Forest Resource Management, University of British Columbia, Vancouver, British Columbia, Canada
3. Department of Geography, Université of Québec in Montréal, Montréal, Quebec, Canada
Abstract:Site index is an important forest inventory attribute that relates productivity and growth expectation of forests over time. In forest inventory programs, site index is used in conjunction with other forest inventory attributes (i.e., height, age) for the estimation of stand volume. In turn, stand volumes are used to estimate biomass (and biomass components) and enable conversion to carbon. In this research, we explore the implications and consequences of different estimates of site index on carbon stock characterization for a 2,500-ha Douglas-fir-dominated landscape located on Eastern Vancouver Island, British Columbia, Canada. We compared site index estimates from an existing forest inventory to estimates generated from a combination of forest inventory and light detection and ranging (LIDAR)-derived attributes and then examined the resultant differences in biomass estimates generated from a carbon budget model (Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3)). Significant differences were found between the original and LIDAR-derived site indices for all species types and for the resulting 5-m site classes (p?p?p?=?0.288). Overall, the relationship between the two biomass estimates was strong (R 2?=?0.92, p?
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号