首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of the UNC toluene-SOA mechanism with respect to other chamber studies and key model parameters
Institution:1. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China;2. State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China;3. Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing 100084, China;1. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;2. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China;3. CSIRO Energy, North Ryde, NSW 1670, Australia;4. New South Wales Department of Planning, Industry and Environment, Lidcombe, NSW 1825, Australia
Abstract:In a companion paper by Hu et al. 2007. A kinetic mechanism for predicting secondary organic aerosol formation from toluene oxidation in the presence of NOx and natural sunlight. Atmospheric Environment, doi:10.1016/j.atmosenv.2007.04.025], a kinetic mechanism was developed from data generated in the University of North Carolina's (UNC) 270 m3 dual outdoor aerosol smog chamber, to predict secondary organic aerosol (SOA) formation from toluene oxidation in the atmosphere. In this paper, experimental data sets from European Photoreactor (EUPHORE), smog chambers at the California Institute of Technology (Caltech), and the UNC 300 m3 dual-outdoor gas phase chamber were used to evaluate the toluene mechanism. The model simulates SOA formation for the ‘low-NOx’ and ‘mid-NOx’ experiments from EUPHORE chambers reasonably well, but over-predicts SOA mass concentrations for the ‘high-NOx’ run. The model well simulates the SOA mass concentrations observed from the Caltech chambers. Experiments with the three key toluene products, 1,4-butenedial, 4-oxo-2-pentenal and o-cresol in the presence of oxides of nitrogen (NOx) are also simulated by the developed mechanism. The model well predicts the NOx time–concentration profiles and the decay of these two carbonyls, but underestimates ozone (O3) formation for 4-oxo-2-pentenal. It well simulates SOA formation from 1,4-butenedial but overestimates (possibly due to experimental problems) the measured aerosol mass concentrations from 4-oxo-2-pentenal. The model underestimates SOA production from o-cresol, mostly due to its under-prediction of o-cresol decay. The effects of varying temperature, relative humidity, glyoxal uptake, organic nitrate yields, and background seed aerosol concentrations, were also investigated.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号