首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of missing seasonal data on estimates of period means of dry and wet deposition
Institution:1. US EPA, ORD, NERL, Research Triangle Park, NC 27711, USA;2. Computer Sciences Corporation, Durham, NC 27713, USA;1. US EPA, ORD, NERL, Research Triangle Park, NC 27711, USA;2. Computer Sciences Corporation, Durham, NC 27713, USA;3. The Pennsylvania State University, Environmental Resources Institute, University Park, PA 16802, USA;1. Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, PR China;2. Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
Abstract:The current study uses resampling to investigate the impacts of cyclic seasonal behavior on 1- and 5-year period means composed from seasonal mean values in the presence of missing data. This is an empirical study using complete years of seasonal monitoring data collected in the eastern US and extracted from the clean air status and trends network (CASTNET) dry and the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) wet deposition data archives. Estimators of period means with missing seasonal data are determined using means of the non-missing values as estimates of the missing data. Estimates are evaluated in terms of 95% inclusion intervals (e.g., estimates are within ±X% of the true value ⩾95% of the time). For dry deposition, missing transition seasons (i.e., spring or fall) usually yield estimates of annual means that are within ±20% of the true annual mean ⩾95% of the time. Missing summers or winters usually have larger impacts on estimates of annual means of dry deposited species than missing transition seasons. A missing summer has the largest impact on estimates of annual means of dry deposition for all constituents, except SO2, where winter is especially important. For wet deposition, a missing season yields estimates of annual means that are within ±30% of the true annual mean ⩾95% of the time. A missing summer has the largest impact on estimates of annual means of wet deposition for all constituents, except NH4+, where spring and fall are important. A strategy requiring at least 3 years of seasonal representation for three seasons with the fourth season having at least two seasonal values, yields estimates of wet deposition that are within ±17% of the true 5-year means ⩾95% of the time for all species. Corresponding confidence statements for dry deposition results are considerably stronger, with estimates that are within ±10% of the true 5-year mean ⩾95% of the time.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号