首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Global backtracking of anthropogenic radionuclides by means of a receptor oriented ensemble dispersion modelling system in support of Nuclear-Test-Ban Treaty verification
Institution:1. Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization, Provisional Technical Secretariat, Vienna International Data Centre, P.O. Box 1200, A-1400 Vienna, Austria;2. Institute of Meteorology, University of Natural Resources and Applied Life Science, Peter-Jordan-Street 82A-1190 Vienna, Austria;3. National Oceanic and Atmospheric Administration (NOAA) 1325 East West Highway Silver Spring, MD 20910-3283, USA;4. US National Data Centre, HQ Air Force Technical Applications Centre (AFTAC)/TMAR Patrick AFB, FL 32925-3002, USA;5. Canadian Meteorological Centre, Environmental Emergency Response Division, 2121 Trans-Canada Highway, Dorval, Que., Canada H9P IJ3;6. Met Office, FitzRoy Road, Exeter, Devon EX1 3PB, UK;7. Deutscher Wetterdienst, Frankfurter Straße 135, D-63067 Offenbach/Main, Germany;8. Commissariat à l’energie atomique (CEA) B.P. 12, F-91680 Bruyères-le-Châtel, France;9. Federal Emergency Response Centre (FEERC/Roshydromet), Scientific Production Association (SPA) “Typhoon”, 82 Lenin Prospekt, 249038 Obinsk, Kaluga Region, Russian Federation;10. Japan Meteorological Agency, 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan;11. National Meteorological Centre, China Meteorological Administration, 46 Zhongguancun Nandajie, Haidian District, Beijing 100081, Peoples Republic of China;12. National Meteorological and Oceanographic Centre, Bureau of Meteorology, 700 Collins Street, Melbourne, Victoria 3000, Australia;13. Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Hohe Warte 38, A-1190 Vienna, Austria;14. World Meteorological Organization, 7bis, rue de la Paix, PO Box 2300, CH-1211 Geneva 2, Switzerland;1. Institut de radioprotection et de sûreté nucléaire, 31, avenue de la Division Leclerc, 92260, Fontenay-aux-Roses, France;2. Inria, Domaine de Voluceau, BP 105, 78153, Le Chesnay Cedex, France;3. CEREA, Joint Laboratory École des Ponts ParisTech/EDF R&D, Université Paris Est, Marne-la-Vallée, France;1. Environmental Research Department, SRI Center for Physical Sciences and Technology, Vilnius, Lithuania;2. Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
Abstract:In this paper, we introduce a methodology for quality assessment of backtracking models. We present results illustrating the level of agreement between the backtracking models, and the accuracy of each model and the ensemble model in resolving the geo-temporal reference of a single point source. Both assessments are based on an ensemble of 12 different Lagrangian particle dispersion modelling (LPDM) systems utilized in receptor oriented (adjoint) mode during an international numerical experiment dedicated to source region estimation.As major result, we can confirm that the findings of Galmarini et al. 2004b. Ensemble prediction forecasting—Part II: application and evaluation. Atmospheric Environment 38, 4619–4632] and Delle Monache and Stull 2003. An ensemble air-quality forecast over Europe during an ozone episode. Atmospheric Environment 37, 3469–3474], regarding the superiority of the ensemble dispersion forecast over a single forecast, do also apply to LPDM when utilized for backtracking purposes, in particular if only vague a priori knowledge of the source time is available. This, however, is a likely situation in the context of the global nuclear monitoring performed by the Provisional Technical Secretariat (PTS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), where quick but reliable source location identification is required. We introduce a simple methodology as a template for a future electronic emergency response system in the field of dispersion modelling.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号