首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Predicting size-resolved particle behavior in multizone buildings
Institution:1. Indoor Environment Department, Lawrence Berkeley National Laboratory; One Cyclotron Road, Mail Stop: 90R3058, Berkeley, CA 94720, USA;2. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore;1. Dstl, Porton Down, Salisbury SP4 0JQ, Wiltshire, United Kingdom;2. Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Abstract:We compare model predictions to measurements of SF6 and environmental tobacco smoke particle concentrations in a three-room chamber experiment. To make predictions of multi-room aerosol transport and fate, we linked a multizone airflow model (COMIS) with an indoor aerosol dynamics model (MIAQ4). The linked models provide improved simulation capabilities for predicting aerosol concentrations and exposures in buildings. In this application, we found that the multizone air flow model was vital for predicting the inter-room airflows due to temperature differences between the rooms and when air-sampling pumps were operating during the experiment. Model predictions agree well with measurements, as shown by several comparison metrics. However, predictions of airborne ETS concentrations are slightly lower than measurements. This is mostly attributable to under-stating the source release amount, which we specified independently from literature estimates. Model predictions of ETS particle-size distributions agree with measurements; size bins with the peak concentrations are slightly over-predicted initially, but agree thereafter.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号