Abstract: | The purpose of this study was a refinement of knowledge on predicting the ejection velocities of fragments generated by explosions of cylindrical horizontal pressure vessels. A procedure is proposed for assessing these velocities by means of the stochastic simulation. The procedure is used to quantify uncertainties related to the ejection velocities and to carry out a simulation-based sensitivity analysis. The main finding is that the currently available information on phenomena related to the vessel fragmentation is sparse and, therefore, predicting ejection velocities will require a substantial amount of subjective judgement. It was found that ejection velocities are functions of a relatively large number of random input variables, many of which must be modelled subjectively. The study revealed also the need to choose subjectively between several alternative mathematical models used to specify input variables that influence the ejection velocities. The most critical choice must be made between several models used for an assessment of the energy liberated during vessel explosions. Results of the sensitivity analysis indicate that the ejection velocities are influenced mainly by input variables used to express energies involved in the prediction problem. Increased sensitivity to filling ratio of a two-phase pressure vessel was also detected. Results of the study can be used for an improvement of estimation of fragment impact probabilities and design of protective barriers that are built close to the pressure vessels posing explosion hazard. |