首页 | 本学科首页   官方微博 | 高级检索  
     


Flameless venting of dust explosion: Testing and modeling
Affiliation:1. School of Chemical Machinery and Safety Engineering, Dalian University of Technology, Dalian 116024, PR China;2. Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan;3. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, PR China;4. School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
Abstract:Flameless venting is a sort of dual mitigation technique allowing, in principle, to vent a process vessel inside a building where people are working without transmitting a flame outside the protected vessel. Existing devices are an assembly of a vent panel and a metal filter so that the exploding cloud and the flame front is forced to go through the filter. Within the frame of ATEX Directive, those systems need to be certified. To do so a standard (NF EN 16009) has been issued describing which criteria need to be verified/measured. Among them, the “efficiency” factor as defined earlier for standard vents. This implies that flameless venting systems are basically considered as vents. But is it really so? This question is discussed on the basis of experimental results and some implications on the practical use and certification process are drawn. The practical experience of INERIS in testing such systems is presented in this paper. Schematically, with a flameless vent the pressure is discharged but not the flame so that combustion is proceeding to a much longer extent inside the vessel than with a classical vent so that the physics of the explosion is different. In particular it is shown that besides the problem of the unloading of the confined explosion, there is a highly complicated fluid mechanics problem of a fluid-particle flow passing through a porous media (the flameless device grids arrangement in the filter), which passing surface is progressively reduced. To characterize Flameless venting the problem can be addressed sequentially, considering separately the vent panel and the flameless mesh. A model is proposed to estimate the overall venting efficiency of the flameless vent. However, it does not address the flame quenching issue, which is a different problem of heat exchange between the devices and the evacuated burnt products.
Keywords:Dust explosions  Vented explosions  Flameless venting  Explosion mitigation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号