How aerosol direct effects influence the source contributions to PM2.5 concentrations over Southern Hebei,China in severe winter haze episodes |
| |
Authors: | Litao Wang Joshua S. Fu Wei Wei Zhe Wei Chenchen Meng Simeng Ma Jiandong Wang |
| |
Affiliation: | 1. Department of Environmental Engineering, Hebei University of Engineering, Handan 056038, China2. Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN 37996, USA3. Department of Environmental Science, Beijing University of Technology, Beijing 100124, China4. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China |
| |
Abstract: | The aerosol direct effects result in a 3%–9% increase in PM2.5 concentrations over Southern Hebei. These impacts are substantially different under different PM2.5 loadings. Industrial and domestic contributions will be underestimated if ignoring the feedbacks. Beijing-Tianjin-Hebei area is the most air polluted region in China and the three neighborhood southern Hebei cities, Shijiazhuang, Xingtai, and Handan, are listed in the top ten polluted cities with severe PM2.5 pollution. The objective of this paper is to evaluate the impacts of aerosol direct effects on air quality over the southern Hebei cities, as well as the impacts when considering those effects on source apportionment using three dimensional air quality models. The WRF/Chem model was applied over the East Asia and northern China at 36 and 12 km horizontal grid resolutions, respectively, for the period of January 2013, with two sets of simulations with or without aerosol-meteorology feedbacks. The source contributions of power plants, industrial, domestic, transportation, and agriculture are evaluated using the Brute-Force Method (BFM) under the two simulation configurations. Our results indicate that, although the increases in PM2.5 concentrations due to those effects over the three southern Hebei cities are only 3%–9% on montly average, they are much more significant under high PM2.5 loadings (~50 μg·m−3 when PM2.5 concentrations are higher than 400 μg m−3). When considering the aerosol feedbacks, the contributions of industrial and domestic sources assessed using the BFM will obviously increase (e.g., from 30%–34% to 32%–37% for industrial), especially under high PM2.5 loadings (e.g., from 36%–44% to 43%–47% for domestic when PM2.5>400 μg·m−3). Our results imply that the aerosol direct effects should not be ignored during severe pollution episodes, especially in short-term source apportionment using the BFM. |
| |
Keywords: | Aerosol direct effect PM2.5 Southern Hebei WRF/Chem Haze |
|
| 点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息 |
|
点击此处可从《Frontiers of Environmental Science & Engineering》下载全文 |
|