首页 | 本学科首页   官方微博 | 高级检索  
     

改性酚醛泡沫脱除SO2/NOx影响因素模型
引用本文:王猛, 许绿丝, 苑媛, 张月, 张倩. 改性酚醛泡沫脱除SO2/NOx影响因素模型[J]. 环境工程学报, 2017, 11(5): 2909-2914. doi: 10.12030/j.cjee.201512134
作者姓名:王猛  许绿丝  苑媛  张月  张倩
作者单位:1.华侨大学化工学院, 厦门 361021
基金项目:国家自然科学基金资助项目(51178195)
摘    要:改性酚醛泡沫具有良好的吸附性能,可用于脱除气态污染物,需深入研究其脱除效率与各影响因素间关系。首次引入支持向量机建立改性酚醛泡沫吸附反应床模型,研究在不同温度、气质比、含氧量等影响因素下改性酚醛泡沫脱除二氧化硫、氮氧化物等气态污染物的脱除效果及最优反应条件。烟气模拟脱硫脱硝实验确定RBF-ε-SVM模型为反应器内最优污染物浓度分布预测模型,惩罚系数c=100,gamma因子g=0.1。基于最优模型的各影响因素实验表明:氧气含量在6%时改性酚醛泡沫脱硫脱硝效果最佳;随着质气比的增加脱除效果增强;反应温度在80 ℃内脱除SO2和NO的效率随着烟气温度的升高而降低。该模型可用于改性酚醛泡沫吸附反应床的最优工况选择,反应器内浓度分布的在线监控,以及指导反应器的放大、中试。

关 键 词:改性酚醛泡沫   支持向量机   大气污染物控制   浓度预测
收稿时间:2016-04-14

Influencing factors of SO2/NOx removal by activated carbon modified phenolic foam
WANG Meng, XU Lüsi, YUAN Yuan, ZHANG Yue, ZHANG Qian. Influencing factors of SO2/NOx removal by activated carbon modified phenolic foam[J]. Chinese Journal of Environmental Engineering, 2017, 11(5): 2909-2914. doi: 10.12030/j.cjee.201512134
Authors:WANG Meng  XU Lüsi  YUAN Yuan  ZHANG Yue  ZHANG Qian
Affiliation:1.College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
Abstract:A modified phenolic foam with excellent properties was used in this research to remove gaseous pollutants. The relationships between the removal rate of SO2/NO and several influencing factors of such were studied using a support vector machine (SVM)that simulates the gaseous pollutants removal process by the modified phenolic foam. Processing experimental data on the removal of SO2/NO by the modified phenolic foam with different mass gas ratios,oxygen contents,and temperaments were obtained. Taming the data to determine the RBF-ε-SVM model for optimal predictive models that punishing factor c=100 and gamma factor g=0.1. The RBF-ε-SVM model predicted the distribution of SO2/NO concentration in the reactor. The predicting concentration was visualized through MATLAB software. The results showed that 6% oxygen in the flue was the most advantageous for removing SO2/NO and a higher mass gas ratio was favorable for SO2/NO removal. The removal efficiency of SO2 and NO decreased as the gas temperature increased below 80℃. The model can be used to select the optimal operating conditions for the modified phenolic foam adsorption reaction bed,reactor concentration distribution prediction,and guidance for reactor scale-up.
Keywords:modified phenolic foam  support vector machine(SVM)  air pollutant control  concentration prediction
本文献已被 CNKI 等数据库收录!
点击此处可从《环境工程学报》浏览原始摘要信息
点击此处可从《环境工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号