首页 | 本学科首页   官方微博 | 高级检索  
     

我国典型燃煤源和工业过程源排放PM2.5成分谱特征
引用本文:刘亚勇,张文杰,白志鹏,杨文,赵雪艳,韩斌,王歆华. 我国典型燃煤源和工业过程源排放PM2.5成分谱特征[J]. 环境科学研究, 2017, 30(12): 1859-1868. DOI: 10.13198/j.issn.1001-6929.2017.03.34
作者姓名:刘亚勇  张文杰  白志鹏  杨文  赵雪艳  韩斌  王歆华
作者单位:中国环境科学研究院, 环境基准与风险评估国家重点实验室, 北京 100012
基金项目:科技部科技基础性工作专项(2013FY112700);国家科技支撑计划项目(2014BAC23B02)
摘    要:鉴于我国本地化源谱(源成分谱)数量不足的现状,采用稀释通道系统对燃煤源和工业过程源进行采样,建立了4类燃煤锅炉(链条炉、流化床、往复炉和煤粉炉)和6类工业过程源(炼铁、铝焙烧、铝煅烧、砖瓦炉、水泥窑头和窑尾)的PM2.5成分谱,并对源谱特征进行研究.结果表明:① 不同源谱组分特征差异明显.水泥窑炉排放的PM2.5中,w(Ca)、w(Si)、w(OC)、w(SO42-)较高,分别为8.51%~14.18%、5.69%~11.80%、3.47%~15.56%、8.67%~16.85%;燃煤锅炉中Al(4.50%~8.67%,质量分数,余同)、OC(6.44%~15.33%)、SO42-(9.85%~22.87%)组分贡献较大;炼铁和铝冶炼工艺源谱中主导化学组分分别为Fe(8.57%~9.88%)和Al(11.81%~16.58%);砖瓦炉颗粒物源谱中主要组分为SO42-、NH4+、Si等.② 不同污染源PM2.5成分谱的分歧系数结果显示,流化床和煤粉炉、水泥窑头和窑尾源谱较为相似,其分歧系数分别为0.26和0.28,其余源谱间均存在一定差异.进一步计算组分差异权重(R/U)发现,往复炉源谱中组分Zn、Sn与其他3类锅炉有明显不同.流化床/煤粉炉源谱中的Si、Ni,窑头/窑尾源谱中的K、Mn、OC组分差异显著,可以作为区分相似源谱的标识组分.与其他研究建立的源谱相比,燃煤源谱中w(EC)和w(SO42-)偏高.钢铁源谱中w(EC)和w(NH4+)较其他地区偏高,w(Pb)偏低;工业过程源谱中,w(Cl-)较SPECIATE相关源谱偏低,而w(Ⅴ)和w(Cr)偏高.鉴于颗粒物源谱受到不同燃料种类、燃烧方式和烟气控制设施等影响而存在差异,源谱的准确性和代表性还需进一步测试和验证. 

关 键 词:PM2.5成分谱   燃煤源   工业过程源  
收稿时间:2016-11-23
修稿时间:2017-08-25

Characteristics of PM2.5 Chemical Source Profiles of Coal Combustion and Industrial Process in China
LIU Yayong,ZHANG Wenjie,BAI Zhipeng,YANG Wen,ZHAO Xueyan,HAN Bin and WANG Xinhua. Characteristics of PM2.5 Chemical Source Profiles of Coal Combustion and Industrial Process in China[J]. Research of Environmental Sciences, 2017, 30(12): 1859-1868. DOI: 10.13198/j.issn.1001-6929.2017.03.34
Authors:LIU Yayong  ZHANG Wenjie  BAI Zhipeng  YANG Wen  ZHAO Xueyan  HAN Bin  WANG Xinhua
Affiliation:State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Abstract:In view of insufficient local source profiles in China,PM2.5 source profiles for coal-fired boilers and industrial processes'' emissions were established.Four coal burning sources from coal-fired boilers of grate firing,fluidized bed,converters and pulverized coal,and 6industrial process emissions from metallurgy,steel production and construction materials production were discussed. Results showed that:(1) The chemical composition shows special characteristics in different source categories. Ca (8.51%-14.18%),Si (5.69%-11.80%),OC (3.47%-15.56%) and SO42- (9.85%-22.87%) were shown to be the major species of PM2.5 from cement kiln;Al,SO42- and OC marked coal-fired boiler,accounted for 4.50%-8.67%,6.44%-15.33% and 9.85%-22.87%,respectively;Fe (8.57%-9.88%) and Al (11.81%-16.58%) were the most abundant elements in steel production and aluminum metallurgy. The highest abundances of SO42-,NH4+,Si were observed in brick kiln emissions. (2) The coefficient of divergence (CD) and the distribution of weighted differences (R/U ratio) were used to compare the similarities and differences of source profiles. Good similarities were observed between fluidized bed and pulverized coal boiler emissions,and between cement kiln head and inlet emissions. Si and Ni were expected to distinguish profiles between fluidized bed and pulverized coal boiler with the R/U>3. K,Mn and OC abundances were significant different between profiles of cement kiln head and inlet. Differences of source profiles from different studies including SPECIATE database were compared. EC and SO42- from coal burning,EC and NH4+ from steel production were higher than those of studies in other regions. Compared with source profiles in SPECIATE v4.5,Cl- abundances in metallurgy,cement and brick kiln were lower,while V and Cr were higher in this research. The discrepancies of chemical species from different source profiles are closely linked to different fuels,combustion modes and control facilities. More tests are needed for further study.
Keywords:PM2.5  source profiles  coal-fired boiler emissions  industrial process sources
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学研究》浏览原始摘要信息
点击此处可从《环境科学研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号