首页 | 本学科首页   官方微博 | 高级检索  
     

输入数据精度与准确性对SWAT模型模拟的影响
引用本文:陈海涛,王晓燕,南哲,韩晓萌,吴艾璞,黄洁钰,庞树江. 输入数据精度与准确性对SWAT模型模拟的影响[J]. 中国环境科学, 2021, 41(5): 2151-2160
作者姓名:陈海涛  王晓燕  南哲  韩晓萌  吴艾璞  黄洁钰  庞树江
作者单位:1. 首都师范大学资源环境与旅游学院, 北京 100048;2. 首都师范大学首都圈水环境研究中心, 北京 100048
基金项目:北京市自然科学基金委员会-北京市教育委员会联合资助项目(KZ201810028047);国家自然科学基金资助项目(21377168,40971258)
摘    要:以潮河流域为研究区域,利用潮河流域1990~2013年监测数据,构建SWAT模型,在模型结构和参数不改变的情况下,探究输入数据精度(DEM分辨率)与准确性(降水插值)对径流和总氮模拟结果影响.结果 显示:DEM分辨率变化(30~300m)对径流及总氮模拟效果不同,对径流模拟影响不明显,纳什系数(ENS)和R2可达到0....

关 键 词:SWAT模型  DEM分辨率  降水数据  潮河流域
收稿时间:2020-09-18

The influence of input data precision and accuracy on SWAT model simulation
CHEN Hai-tao,WANG Xiao-yan,NAN Zhe,HAN Xiao-meng,WU Ai-pu,HUANG Jie-yu,PANG Shu-jiang. The influence of input data precision and accuracy on SWAT model simulation[J]. China Environmental Science, 2021, 41(5): 2151-2160
Authors:CHEN Hai-tao  WANG Xiao-yan  NAN Zhe  HAN Xiao-meng  WU Ai-pu  HUANG Jie-yu  PANG Shu-jiang
Affiliation:1. College of Resources, Environment and Tourism, Capital Normal University, Beijing 100048, China;2. Research Center of Aquatic Environment in the Capital Region, Capital Normal University, Beijing 100048, China
Abstract:The influence of input data precision and accuracy (DEM resolution and precipitation interpolation) on runoff and total nitrogen simulation was studied with runoff and water quality monitoring data of Chaohe watershed from 1990 to 2013 as samples. The results showed that there were different effects of the DEM resolution change (30~300m) on runoff and total nitrogen simulation results. No significant impact on runoff simulation were found, with ENS and R2 above 0.87. While greater effects on total nitrogen simulation results were found. The finer the resolution, the better the simulation accuracy. Under different hydrological years, heterogeneous impacts on simulation performance were found on total nitrogen (TN) load with the change of DEM resolution. There were more significant differences in wet years than in dry years. The influence on the spatial distribution of the annual average (1993~2002) total nitrogen load were much less with the change of DEM resolutions. The high load areas were located in the midstream of the Chaohe watershed, and low load areas in the upstream and downstream. There were larger discrepancies in the spatial distribution of precipitation in the watershed under different distribution and density of monitoring sites, and accuracy of precipitation input data. In general, the runoff and total nitrogen simulation results based on the interpolation data of the fewer weather stations were close to results based on monitoring data of rainfall stations, and the simulation performance based on interpolation data of SWAT official rainfall stations was relatively poor. The spatial distribution of simulated total nitrogen intensity load were obviously different with different precipitation data inputs. The higher the precipitation, the higher total nitrogen load intensity. In different hydrological years, the simulation performance of total nitrogen load also differed with different precipitation data inputs. In wet and dry years, simulation results of TN based on the interpolation data of the weather stations were closer to results based on the rainfall station data, while large simulation deviations were found with the official SWAT rainfall station data. In the normal years, the simulation performance based on official SWAT rainfall station data was better than those based on the interpolation data of the weather stations. This research provided a scientific reference for watershed modeling applications regarding input data accuracy and precision.
Keywords:SWAT model  DEM resolution  precipitation data  Chaohe watershed  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国环境科学》浏览原始摘要信息
点击此处可从《中国环境科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号