首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Selective effects of fenitrothion on murine splenic T-lymphocyte populations and cytokine/granzyme production
Authors:Hong Liu  Jiang X Li  Jing L Tian  Chen Wang  Yu X Wang  Yi F Wan
Institution:1. Collage of Biological Science and Technology, Beijing Forestry University, Beijing, China;2. Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
Abstract:The aim of this study was to investigate in vitro effects of fenitrothion (FNT) on mouse splenic lymphocytes. Here, naïve mice had their spleens harvested and splenocytes isolated. After exposure to FNT for 48 hr: splenocyte viability was measured using a tetrazolium dye assay; cell phenotypes, i.e., B-cells (CD19+), T-cells (CD3+), and T-cell subsets (CD4+ and CD8+), were quantified by flow cytometry; and, production of cytokines/granzyme-B was assessed via enzyme-linked immunosorbent assay. The ability for FNT to induce oxidative stress in the cells was evaluated by measuring hydroxyl radical (·OH) and malondialdehyde (MDA) production and changes in glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activity. The results showed that FNT significantly inhibited splenocyte proliferation, and decreased production of interleukin (IL)-2, interferon gamma, IL-4, and granzyme B, but had no impact on IL-6 production. FNT also selectively decreased splenic T-cell levels but did not induce changes in CD19+ B-cells. Further, within the T-cell populations, percentages of CD3+, CD4+, and CD8+ T-cells (particularly CD8+ T-cells) were reduced. Lastly, FNT selectively increased MDA and ·OH production and inhibited SOD and GSH-Px activities in the splenic lymphocytes. These findings suggest that, due to oxidative damage, FNT selectively inhibits splenic T-lymphocyte survival and cytokine/granzyme production in vitro.
Keywords:Fenitrothion  immunotoxicity  splenocytes  T cells  oxidative stress
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号