首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Coupling air quality and land use modeling within an optimization framework
Authors:Kirk Hatfield
Institution:

Dept. of Civil Engineering University of Florida, Gainesville, FL 32611, USA

Abstract:Land use regulations and air quality standards can be effective tools to control air pollution. Atmospheric transport/chemistry simulation models could be used to develop suitable regulations and standards; however, these models are not as efficient as air quality management models developed from embedding governing equations for atmospheric transport/chemistry into an optimization framework. Formulations of two steady-state air quality management models are presented to facilitate the development or evaluation of land use strategies to protect regional air quality from pollution generated from distributed point or nonpoint sources. Both models are linear programs constructed with equations that describe steady-state atmospheric pollutant fate and transport. The first model determines feasible pollutant loading patterns for multiple land use activities to accommodate the greatest regional population. The second model ascertains patterns of expanded land use which have a minimum impact on air quality. The primary goal of this paper is to explain how air pollution and land use modeling may be coupled to create an effective management tool to aid scientists and engineers with decisions affecting air quality and land use. The secondary goal is to show the types of air quality and regulatory information which could be obtained from these models. This latter goal is attained with general conclusions as consequence of applying ‘duality theory.’
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号