首页 | 本学科首页   官方微博 | 高级检索  
     


PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region,Japan
Authors:Mengqian Lu  Bin-Le Lin  Kazuya Inoue  Zhongfang Lei  Zhenya Zhang  Kiyotaka Tsunemi
Affiliation:1.Graduate School of Life and Environmental Sciences,University of Tsukuba,Tsukuba, Ibaraki,Japan;2.National Institute of Advanced Industrial Science and Technology,Tsukuba, Ibaraki,Japan
Abstract:
Ammonia has emerged as a promising hydrogen carrier with applications as an energy source in recent years. However, in addition to being toxic, gaseous ammonia is a precursor of secondary inorganic aerosols. The concentration of ambient fine particulate matter (PM2.5) is intrinsically connected to public health. In this study, PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan, were investigated. It was assumed that 20% of the electricity consumption in Kanto Region, the most populated area in Japan, was supplied by ammonia-hydrogen energy. The PM2.5 resulted from incomplete ammonia decomposition was simulated by a chemical transport model: ADMER-PRO (modified version). Based on the incremental PM2.5 concentration, health impacts on the elderly (individuals over 65 years old) were quantitatively evaluated. The ammonia emission in this scenario increased PM2.5 by 11.7% (0.16 μg·m–3·y–1) in winter and 3.5% (0.08 μg ·m–3·y–1) in summer, resulting in 351 premature deaths per year. This study suggests that costeffective emissions control or treatment and appropriate land planning should be considered to reduce the associated health impacts of this type of energy generation. In addition, further in-depth research, including cost-benefit analysis and security standards, is needed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号