A tutorial on learning human welder's behavior: Sensing,modeling, and control |
| |
Affiliation: | 1. L.D.R.P.-I.T.R., Gandhinagar, Gujarat, India;2. Department of Mechanical Engineering, SOT, Pandit Deendayal Petroleum University, Gandhinagar-7, Gujarat, India;1. Canadian Centre for Welding and Joining, University of Alberta, Edmonton, Alberta T6G 2V4, Canada;2. Apollo Clad;3. Ulterra Drilling Technologies |
| |
Abstract: | Human welder's experiences and skills are critical for producing quality welds in manual GTAW process. Learning human welder's behavior can help develop next generation intelligent welding machines and train welders faster. In this tutorial paper, various aspects of mechanizing the welder's intelligence are surveyed, including sensing of the weld pool, modeling of the welder's adjustments and this model-based control approach. Specifically, different sensing methods of the weld pool are reviewed and a novel 3D vision-based sensing system developed at University of Kentucky is introduced. Characterization of the weld pool is performed and human intelligent model is constructed, including an extensive survey on modeling human dynamics and neuro-fuzzy techniques. Closed-loop control experiment results are presented to illustrate the robustness of the model-based intelligent controller despite welding speed disturbance. A foundation is thus established to explore the mechanism and transformation of human welder's intelligence into robotic welding system. Finally future research directions in this field are presented. |
| |
Keywords: | Human intelligence Weld pool Sensing Modeling Control GTAW |
本文献已被 ScienceDirect 等数据库收录! |
|