Design of Experimental Streams for Simulating Headwater Stream Restoration1 |
| |
Authors: | Jung-Chen Huang William J. Mitsch Andrew D. Ward |
| |
Affiliation: | 1. Respectively, Research Associate and Distinguished Professor/Director (Huang and Mitsch), Wilma H. Schiermeier Olentangy River Wetland Research Park, School of Environment and Natural Resources, The Ohio State University, 352 W. Dodridge Street, Columbus, Ohio 43202;2. Professor of Food, Agricultural, and Biological Engineering (Ward), The Ohio State University, Woody Hayes Drive, Columbus, Ohio 43210. |
| |
Abstract: | Huang, Jung-Chen, William J. Mitsch, and Andrew D. Ward, 2010. Design of Experimental Streams for Simulating Headwater Stream Restoration. Journal of the American Water Resources Association (JAWRA) 1-15. DOI: 10.1111/j.1752-1688.2010.00467.x Abstract: Headwater streams flowing through agricultural fields in the midwestern United States have been extensively modified to accommodate subsurface drainage systems, resulting in deepened, straightened, and widened streams. To restore these headwater streams, partial or total reconstruction of channels is frequently attempted. There are different approaches to reconstructing the channel, yet there is little evidence that indicates which promises more success and there has been no experimental work to evaluate these approaches. This study designs three experimental channels – two-stage, self-design, and straightened channels – on a human-created swale at the Olentangy River Wetland Research Park, Columbus, Ohio, for long-term evaluation of headwater stream evolution after restoration. The swale receives a continuous flow of pumped river water from upstream wetlands. Using streamflow and stage data for the past 12 years, a channel-forming discharge of 0.18 m3/s was estimated from bankfull discharge, effective discharge, and recurrence interval. These stream channels, after construction, will be monitored to evaluate physical, chemical, and biological responses to different channels over a decade-long experiment. We hypothesize that the three stream restoration designs will eventually evolve to a similar channel form but with different time periods for convergence. Monitoring the frequency and magnitude of changes over at least 10 years is needed to document the most stable restored channel form. |
| |
Keywords: | river restoration channel-forming discharge bankfull discharge effective discharge two-stage channel self-design channel Olentangy River Wetland Research Park floodplain experiments river mesocosms |
|
|