首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of anthropogenic activities on chemical contamination within the Grand Canal, China
Authors:Xiaolong Wang  Jingyi Han  Ligang Xu  Junfeng Gao  Qi Zhang
Institution:1. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
2. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
3. Environmental Policy group, Department of Social Sciences, Wageningen University, Hollandseweg 1, 6706 KN, Wageningen, The Netherlands
Abstract:Contamination of nutrients and heavy metals within aquatic system is of great concern due to its potential impact on human and animal health. The Grand Canal of China, the largest artificial river in the world, is of great importance in supplying water resource, transporting cargo, and recreating resident, as well as great historical heritage. This study assessed and examined the impact of human activities on characters of contamination distribution within the section of the Canal in Taihu watershed. Physicochemical parameters of surface water quality were determined monthly from the year 2004 to 2006 at 11 sites that were influenced by different anthropogenic activities along the Canal. Moreover, contaminations at surface sediments (20 cm) at the same locations were also analyzed in September 2006. Results showed that the Canal had been seriously polluted, which was characterized with high spatial variations in contaminations distribution. The sites influenced mainly by industry and urbanization showed higher contents of nutrients and lower levels of dissolve oxygen than other sites. Concentrations of nitrogen at all studied sites exceeded the worst level of surface water quality according to the National Criterion of Surface Water Quality, China, with the average values varying from 2.27 to 10.34 mg/L. Furthermore, the site influenced mainly by industry (i.e., Site 4) presented the highest contents of cadmium (3.453 mg/kg), chromium (196.87 mg/kg), nickel (87.12 mg/kg), zinc (381.8 mg/kg), and copper (357.32 mg/kg). While sites in vicinity to cities had presented relatively higher contents of metals, especially for the site located downstream of Changzhou City (Site 3) had presented the highest contents of mercury (1.64 mg/kg) and lead (197.62 mg/kg). Copper at Sites 2 to 6, Nickel at Sites 2 to 9 except for Site 7, chromium, lead, and zinc at Sites 3 to 6 had exceeded New York State Department of Environmental Conservation (NYSDEC) Severe Effect Level (SEL). By multivariate statistical, nutrient variables, companied with V-phen, had contributed the most variation of water quality, while nutrient and metals had explained the most part of total variance of contaminations in sediment. This study indicated that the canal had been polluted severely and urgently need to control.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号