首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Helium isotopic constraints on simulated ocean circulations: implications for abyssal theories
Authors:Jean-Claude Dutay  Julien Emile-Geay  Daniele Iudicone  Philippe Jean-Baptiste  Gurvan Madec  Claire Carouge
Institution:1. LSCE, IPSL/CEA, UVSQ, CNRS, Gif sur Yvette, France
2. Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
3. IPSL/LOCEAN, Paris, France
4. Stazione Zoologica “Anton Dohrn”, Naples, Italy
Abstract:There is ongoing controversy as to the dynamical significance of geothermal heat flow in shaping the abyssal circulation. In this paper, we gauge the impact of geothermal heating and vertical mixing parameterizations in the general circulation model OPA. The experiments are evaluated by comparing simulated mantle 3He with observations collected during the GEOSECS and WOCE programs. This tracer is particularly adapted to the validation of our numerical simulations because its injection into the ocean interior is tightly linked to geothermal processes. In agreement with previous studies, the model circulation is found very sensitive to the parameterization of the vertical mixing. The meridional overturning circulation (MOC) is globally intensified when moving from a constant mixing to a version with enhanced mixing near the ocean bottom, with the most drastic variation observed for AABW (+ 50%). Adding the geothermal heat flux mainly affects AABW circulation in the model, enhancing it all the more as the meridional circulation is slow (low vertical mixing), but proportionally less so when it is more vigorous (enhanced vertical mixing). This can be understood from the requirement of the abyssal ocean to maintain heat balance. The evaluation with mantle 3He simulations reveals that the version with low vertical mixing, with its sluggish circulation, produces unrealistically high a 3He isotopic composition. However, with a vertical mixing that is enhanced at depth, the 3He distribution falls within an acceptable range of values in the deep ocean. Finally, adding the geothermal heating to this enhanced mixing case provides a substantial improvement of the simulation of AABW in all basins but the Indian Ocean. 3He isotopic composition is then in good agreement with the observations. Taken jointly with observational estimates of the MOC intensity, these independent isotopic constraints suggest that both geothermal heating and enhanced diapycnal mixing at depth are key ingredients in the realistic simulation of abyssal circulation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号