首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Arsenic accumulation and resistance mechanism in Panax notoginseng, a traditional rare medicinal herb
Authors:Yan X L  Lin L Y  Liao X Y  Zhang W B
Institution:a Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science (CAS), Beijing 100101, China
b Wenshan Sanqi Research Institute, Wenshan 663000, China
Abstract:Panax notoginseng, a traditional rare Chinese medicinal herb, was recently found to bring health risk to consumers, mainly because soil in its major plantation area was contaminated by arsenic (As). We investigated the effect of soil As pollution on the growth and As uptake of pot-cultured P. notoginseng, and the associated mechanisms of As stressed response. Results showed that, comparing with P. notoginseng growing in a low-As soil, the root, stem, and leaf biomasses of those growing in a high-As soil significantly reduced by 0.75, 0.09 and 0.21 g seedling−1, respectively. Arsenic concentrations in roots, stems and leaves of the seedlings growing in high-As soil were 22, 15 and 3 times higher than those growing in low-As soil, respectively. Regardless of the soil As concentration, As existed in plants mainly as As(III), suggesting that the reduction of As(V) is a key step in As metabolism. Arsenic was distributed primarily in cell walls (51.7% for plants growing in the low-As soil, and 51.5% in the high-As soil), followed by cytoplasm supernatant, with cell organelles containing the least As. Compared with plants growing in the low-As soil, those in the high-As soil had increased superoxide dismutase and peroxidase activities in their roots, stems, and leaves, which would be associate with improving the resistance of P. notoginseng to As stress. The results suggest that there exists some special mechanisms of As-tolerance in P. notoginseng and the study is of significance in developing measures to reduce As in the herb.
Keywords:Panax notoginseng  Arsenic (As)  Speciation  Resistance  Subcellular distribution  Antioxidation
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号