Mobilization of heavy metals from contaminated paddy soil by EDDS,EDTA, and elemental sulfur |
| |
Authors: | Guoqing Wang Gerwin F. Koopmans Jing Song Erwin J. M. Temminghoff Yongming Luo Qiguo Zhao Jan Japenga |
| |
Affiliation: | (1) Soil and Environment Bioremediation Research Centre, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, P.R. China;(2) Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P.R. China;(3) Department of Soil Quality, Wageningen University, Wageningen University and Research Centre (WUR), P.O. Box 8005, 6700 EC Wageningen, The Netherlands;(4) Alterra, WUR, P.O. Box 47, 6700 AA Wageningen, The Netherlands |
| |
Abstract: | For enhanced phytoextraction, mobilization of heavy metals (HMs) from the soil solid phase to soil pore water is an important process. A pot incubation experiment mimicking field conditions was conducted to investigate the performance of three soil additives in mobilizing HMs from contaminated paddy soil (Gleyi-Stagnic Anthrosol): the [S, S]-isomer of ethylenediamine disuccinate (EDDS) with application rates of 2.3, 4.3, and 11.8 mmol kg−1 of soil, ethylenediamine tetraacetate (EDTA; 1.4, 3.8, and 7.5 mmol kg−1), and elemental sulfur (100, 200, and 400 mmol kg−1). Temporal changes in soil pore water HM and dissolved organic carbon concentrations and pH were monitored for a period of 119 days. EDDS was the most effective additive in mobilizing soil Cu. However, EDDS was only effective during the first 24 to 52 days, and was readily biodegraded with a half-life of 4.1 to 8.7 days. The effectiveness of EDDS decreased at the highest application rate, most probably as a result of depletion of the readily desorbable Cu pool in soil. EDTA increased the concentrations of Cu, Pb, Zn, and Cd in the soil pore water, and remained effective during the whole incubation period due to its persistence. The highest rate of sulfur application led to a decrease in pH to around 4. This increased the pore water HM concentrations, especially those of Zn and Cd. Concentrations of HMs in the soil pore water can be regulated to a large extent by choosing the proper application rate of EDDS, EDTA, or sulfur. Hence, a preliminary work such as our pot experiment in combination with further plant experiments (not included in this study) will provide a good tool to evaluate the applicability of different soil additives for enhanced phytoextraction of a specific soil. |
| |
Keywords: | Biodegradation Chelators Dissolved organic carbon Enhanced phytoextraction Mobility Soil pore water |
本文献已被 PubMed SpringerLink 等数据库收录! |
|