首页 | 本学科首页   官方微博 | 高级检索  
     


Ligand effects on arsenite removal by zero-valent iron/O2: Dissolution, corrosion, oxidation and coprecipitation
Authors:Xiaojie Song  Chen Zhang  Bingdang Wu  Xiaomeng Wang  Zhihao Chen  Shujuan Zhang
Affiliation:State Key Laboratory of Pollution Control and Resource Reuse,School of the Environment,Nanjing University,Nanjing 210023,China;State Key Laboratory of Pollution Control and Resource Reuse,School of the Environment,Nanjing University,Nanjing 210023,China;State Key Laboratory of Pollution Control and Resource Reuse,School of the Environment,Nanjing University,Nanjing 210023,China;State Key Laboratory of Pollution Control and Resource Reuse,School of the Environment,Nanjing University,Nanjing 210023,China;State Key Laboratory of Pollution Control and Resource Reuse,School of the Environment,Nanjing University,Nanjing 210023,China;State Key Laboratory of Pollution Control and Resource Reuse,School of the Environment,Nanjing University,Nanjing 210023,China
Abstract:Ligands may increase the yields of reactive oxygen species (ROS) in zero-valent iron (ZVI)/O2 systems. To clarify the relationship between the properties of ligands and their effects on the oxidative removal of contaminants, five common ligands (formate, acetate, oxalate, ethylenediaminetetraacetic acid (EDTA), and phosphate) as well as acetylacetone (AA) were investigated with arsenite (As(III)) as the target contaminant at three initial pH values (3.0, 5.0, and 7.0). The addition of these ligands to the ZVI/O2 system resulted in quite different effects on As(III) removal. EDTA enhanced the oxidation of As(III) to arsenate (As(V)) but inhibited the removal of As(V). Oxalate was the only ligand in this work that accelerated both the removal of As(III) and As(V). By analyzing the ligand effects from the four aspects: dissolution of surface iron (hydr)oxides, corrosion of ZVI, reaction with ROS, and interference with precipitation, the following properties of ligands were believed to be important: ability to provide dissociable protons, complexation ability with iron, and reactivity with ROS. The complexation ability is a double-edged sword. It could enhance the generation of ROS by reducing the reduction potential of the Fe(III)/Fe(II) redox couple, but also could inhibit the removal of arsenic by coprecipitation. The elucidated relationship between the key property parameters of ligands and their effects on the ZVI/O2 system is helpful for the rational design of effective ZVI/ligand/O2 systems.
Keywords:Zero-valent iron  Ligand  Arsenite  Acetylacetone
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号