首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The development of a chemical 'fingerprint' to characterise dissolved organic matter in natural waters
Authors:Thoss V  Baird M S  Lock M A
Institution:Department of Chemistry, University of Wales, Bangor, UK.
Abstract:A suite of twelve assays has been used to 'fingerprint' dissolved organic matter (DOM). The assays were applied directly to filtered natural water samples. Temperature, pH and conductivity accounted for the environmental conditions on-site. Bulk carbon characteristics were assayed by measuring UV absorbance at 200 and 240 nm, colour in grade Hazen, DOC (dissolved organic carbon), fluorescence (excitation 370 nm, emission 450 nm) and the complexation of phenol itself. Measuring hydroxybenzenes ('monophenolics'), polyhydroxybenzenes ('polyphenolics') and total phenolics with the Gibbs, Prussian Blue and Folin-Ciocalteau assays, respectively, determined the phenolics pool. The methodology was tested on six freshwater sites in North Wales chosen to provide differences in vegetation, land-use and water chemistry and sampled once during each season. A novel approach for the presentation of the data has been developed that combines all range normalised assay results for each site and each season within one polar plot, hence the term 'fingerprint'. The data was also analysed using principal component factor analysis. Assays characterised as determining the chemical properties of DOM contributed to Factor 1 and explained 59% of the variation in the data. Assays apparently determined by the water matrix, contributed to Factor 2 and explained 20% of the variation within the data. The factor scores obtained for each site showed more variation for assays relating to the chemical properties of DOM than to the surrounding water matrix. The methodology was found to detect chemical changes within DOM for each site throughout the year and different responses for different sites.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号