首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Treating contaminated groundwater using a fluidized-bed reactor
Authors:Robert F Hickey  Daniel Wagner  Gene Mazewski
Abstract:Both biological treatment and carbon adsorption have inherent advantages for remediation of groundwater contaminated with compounds such as benzene, toluene, ethylbenzene, and xylenes (BTEX). Biological treatment destroys the contaminants and is extremely cost-effective. Carbon adsorption is a positive removal mechanism that ensures a product water of high quality, but the process is relatively expensive and requires frequent carbon replacement and/or regeneration. Coupling the two processes realizes the inherent advantages of both approaches. An additional benefit of combining these removal mechanisms in a biological fluidizedbed reactor (FBR) system is that no loss of BTEX from volatilization occurs, since predissolution of oxygen is used in place of conventional aeration for the fluidized-bed process. This article summarizes preliminary performance data from a laboratory, pilot-scale biological FBR, using granulated activated carbon (GAC) as the support media (GAC-FBR), operated at various BTEX concentrations and organic loading rates. Greater than 99-percent degradation of total BTEX was achieved at an organic loading rate of 3.0 kg COD/m3-day or less and an empty bed hydraulic retention time of 5.0 minutes. System performance was extremely robust, easily handling a tenfold step increase in loading due to the combined adsorptive capability of the biofilm-coated GAC and ability to subsequently bioregenerate the GAC. Monitoring verified that no off-gas was produced during treatment.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号