首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Conserving Slow-Growing, Long-Lived Tree Species: Input from the Demography of a Rare Understory Conifer, Taxus floridana
Authors:CHARLES KWIT‡  CAROL C HORVITZ†  WILLIAM J PLATT
Institution:Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, U.S.A.; Department of Biology, University of Miami, Coral Gables, FL 33124, U.S.A.
Abstract:Abstract:  Although land preservation and promotion of successful regeneration are important conservation actions, their ability to increase population growth rates of slow-growing, long-lived trees is limited. We investigated the demography of Taxus floridana Nutt., a rare understory conifer, in three populations in different ravine forests spanning its entire geographic range along the Apalachicola River Bluffs in northern Florida (U.S.A.). We examined spatial and temporal patterns in demographic parameters and projected population growth rates by using four years of data on the recruitment and survival of seedlings and established stems, and on diameter growth from cross-sections of dead stems. All populations experienced a roughly 10-fold increase in seedling recruitment in 1996 compared with other years. The fates of seedlings and stems between 8 and 16 mm differed among populations. The fates of stems in two other size classes (the 2- to 4-mm class and the 4- to 8-mm class) differed among both populations and years. Individual stems in all populations exhibited similarly slow growth rates. Stochastic matrix models projected declines in all populations. Stochastic matrix analysis revealed the high elasticity of a measure of stochastic population growth rate to perturbations in the stasis of large reproductive stems for all populations. Additional analyses also indicated that occasional episodes of high recruitment do not greatly affect population growth rates. Conservation efforts directed at long-lived, slow-growing rare plants like Taxus floridana should both protect established reproductive individuals and further enhance survival of individuals in other life-history stages, such as juveniles, that often do not appear to contribute greatly to population growth rates.
Keywords:elasticity analysis  environmental stochasticity  episodic recruitment  matrix population models  population dynamics  spatial and temporal variation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号