The adsorption of short single-stranded DNA oligomers to mineral surfaces |
| |
Authors: | Cleaves H James Crapster-Pregont Ellen Jonsson Caroline M Jonsson Christopher L Sverjensky Dimitri A Hazen Robert A |
| |
Affiliation: | a Geophysical Laboratory, the Carnegie Institution of Washington, 5251 Broad Branch Rd. NW, Washington, DC 20015, USA b Colby College, Waterville, ME 04901, USA c Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA |
| |
Abstract: | We studied the adsorption of short single-stranded deoxyribonucleic acid (ssDNA) oligomers, of approximately 30 nucleotides (nt) in length, of varying sequence, adenine + guanine + cytosine (AGC) content, and propensity to form secondary structure, to equal surface area samples of olivine, pyrite, calcite, hematite, and rutile in 0.1 M NaCl, 0.05 M pH 8.1 KHCO3 buffer. Although the mineral surfaces have widely varying points of zero charge, under these conditions they show remarkably similar adsorption of ssDNA regardless of oligomer characteristics. Mineral surfaces appear to accommodate ssDNA comparably, or ssDNA oligomers of this length are able to find binding sites of comparable strength and density due to their flexibility, despite the disparate surface properties of the different minerals. This may partially be due charge shielding by the ionic strength of the solutions tested, which are typical of many natural environments. These results may have some bearing on the adsorption and accumulation of biologically derived nucleic acids in sediments as well as the abiotic synthesis of nucleic acids before the origin of life. |
| |
Keywords: | DNA Mineral surface adsorption Nucleic acids in the environment Origin of life |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|