首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fate of tetrabromobisphenol A and hexabromocyclododecane brominated flame retardants in soil and uptake by plants
Authors:Li Yaning  Zhou Qixing  Wang Yingying  Xie Xiujie
Institution:a Laboratory of Environmental Science and Engineering, Binhai College of Nankai University, Tianjin 300270, China
b Key Laboratory of Pollution Process and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
c Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
Abstract:The fate of tetrabromobisphenol A (TBBPA) and hexabromocyclododecane diastereomers (α-, β-, and γ-HBCD) and uptake by plants (cabbage and radish) was investigated. In a short-term (8 weeks) experiment, sorption to soil matrix resulted in 90% decline in recovery of these compounds in the experimental soil. However, nearly 50% of initial HBCDs recovered in mixed cabbage-radish treatments, which suggested that interspecific plant interactions might enhance the bioavailability of HBCDs. Although both plant species could uptake TBBPA and HBCDs, cabbage showed greater accumulating ability. Up to 3.5-10.0-fold higher HBCD concentrations were observed than TBBPA concentrations in all plant tissues, and the distribution of HBCDs in plant tissues was diastereomer-specific. The predominance of α-HBCD in shoot tissues for both species might be attributed to diastereomer-specific translocation of HBCDs, shift in diastereomer pattern and/or selective metabolization of γ-HBCD within plants. The results showed that strong sorption to soil particles reduced the potential of human exposure to BFRs in the soil. However, plants increased the exposure risk by uptaking these compounds and by enhancing their bioavailability. The results also provide insight into transport mechanisms of TBBPA and HBCD diastereomers in soil-plant systems.
Keywords:Brominated flame retardants  Organic pollutant  Sorption  Fate  Plant uptake
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号